Wiener-Khintchine-Theorem

Wiener-Khintchine-Theorem

Das Wiener-Chintschin-Theorem, auch bekannt als Wiener-Chintchin-Kriterium oder Chintschin-Kolmogorow-Theorem, besagt, dass die spektrale Leistungsdichte eines „stationären[1]Zufallsprozesses“ die Fourier-Transformation der korrespondierenden Autokorrelationsfunktionen ist. Der Satz gilt aber auch trivialerweise[2] für die stetigen Funktionen periodischer Signale und kann somit auf ein durch Rauschen (Zufallsfunktion) gestörtes periodisches Signal angewandt werden. Der Satz ist benannt nach Alexander Chintschin[3] und Norbert Wiener[4] (manchmal auch noch nach Andrei Nikolajewitsch Kolmogorow)

Inhaltsverzeichnis

Formulierung

Für zeitkontinuierliche Signale hat das Theorem die Gestalt (j steht für die imaginäre Einheit, f für die Frequenz):


S_{xx}(f)=\int_{-\infty}^\infty r_{xx}(\tau)e^{-j2\pi f\tau} d\tau

mit der Autokorrelationsfunktion:

r_{xx}(\tau) = E\left(x(t) \cdot x^*(t-\tau)\right) = \lim_{T_F \to \infty} \frac{1}{T_F}\int_{-T_F/2}^{T_F/2} x^*(t) \cdot x(t - \tau) dt

Dabei ist E der Erwartungswert des Produktes \,x(t) \cdot x^*(t-\tau).

Die spektrale Leistungsdichte \,S_{xx}(f) der Funktion \,x(t) ist außerdem bei Existenz der Fouriertransformierten \,x(f) des Signals \,x(t) definiert als:

\,S_{xx}(f) = {\left| x(f) \right|}^2

Für "Rauschsignale" existiert die Fouriertransformierte x(f) allerdings im Allgemeinen nicht. Der Name spektrale Leistungsdichte (PSD, Power Spectral Density) kommt daher, dass das Signal x(t) häufig eine Spannung ist und die Autokorrelationsfunktion dann eine Energie liefert. „Spektrale Dichte“ besagt, dass die Leistung als Funktion der Frequenz pro Frequenzintervall angegeben wird. Die PSD erlaubt Aussagen über das Vorliegen von Periodizitäten in verrauschten Signalen. Nach dem Wiener-Chintchin-Theorem kann die PSD aus der Autokorrelationsfunktion gewonnen werden. Für die Detektion periodischer Signale im Rauschhintergrund wurde die Autokorrelationsfunktion allerdings schon früher angewandt, z.B. von Yule in den 1920er Jahren.

Umgekehrt ergibt sich auch die Autokorrelationsfunktion als Fouriertransformierte der spektralen Leistungsdichte:


r_{xx} (\tau)= \int_{-\infty}^\infty S_{xx}(f)e^{j2\pi f\tau} d f

Bemerkung: bei Formulierung mit der Kreisfrequenz \,\omega = 2 \pi f lauten die entsprechenden Formeln:

S_{xx}(\omega)= \int_{-\infty}^{+\infty} r_{xx}(\tau)e^{-j\omega\tau} d\tau
r_{xx} (\tau)= \frac{1}{2 \pi}\int_{-\infty}^{+\infty} S_{xx}(\omega)e^{j \omega\tau} d \omega

Das ist die eigentlich übliche Form der Fouriertransformation, hier wird wie in der Signaltheorie üblich eine Formulierung ohne Kreisfrequenz gewählt (siehe Kontinuierliche Fourier-Transformation).

Berechnungen im Frequenzraum sind über dieses Theorem gegen solche im Zeitraum austauschbar, ähnlich wie beim Ergodensatzes bzw. der Ergodenhypothese, die bei typischen Systemen der statistischen Mechanik die Vertauschbarkeit von Zeit- und Ensemblemittel aussagt.

Im Falle zeitdiskreter Signale (einer Zeitreihe mit N Termen) hat das Wiener-Chintschin-Theorem eine ähnliche Form:


S_{xx}(f)=\sum_{k=-\infty}^\infty r_{xx}(k)e^{-j2\pi k f}

Die Summe wird dabei in Anwendungen auf endlich viele (p < N) Terme begrenzt.

Weiterhin ist r_{xx}(k) = E\left(x^*(n)x(n-k)\right) = \frac{1}{N} \sum_n^N x^*(n) x (n-k) die Autokorrelationsfunktion und \,S_{xx}(f) das Leistungsdichtespektrum von \,x(n).

Mathematische Formulierung

\,\phi (u) ist die charakteristische Funktion einer Wahrscheinlichkeitsverteilung f genau dann, falls es eine Funktion x (t) mit 
{\Vert x \Vert}^2  =\int_{-\infty}^\infty x(t)x^*(t) dt =1 gibt so dass

\phi (u) =\int_{-\infty}^\infty x (t) x^*(t+u) dt

Die Wahrscheinlichkeitsverteilung f ist dann durch f = {\Vert \hat x \Vert}^2 gegeben, mit \hat x der charakteristischen Funktion (bis auf Vorfaktoren die Fouriertransformation) von x. Das Theorem ist ein Spezialfall der Plancherel Formel[5] (auch Satz von Plancherel genannt).

Oder in der ursprünglichen Formulierung von Chintchin:

R(u) = \int_{-\infty}^\infty x (t) x^*(t+u) dt ist die dann und nur dann die Korrelationsfunktion eines stationären Zufallsprozesses x(t), falls

R(u) = \int_{-\infty}^\infty \cos (ut) dF(t) dt

mit einer Verteilungsfunktion \,F(t).

Anwendung in der Systemanalyse

Das Theorem erlaubt es, lineare zeitinvariante Systeme (LTI Systeme, linear time invariant), wie z.B. in guter Näherung elektrische Schaltkreise mit passiven Bauelementen, zu untersuchen, wenn deren Ein- und Ausgangssignale nicht quadratintegrabel sind und somit keine Fouriertransformierten existieren, wie im Fall zufälliger Signale (Rauschen). Die Fouriertransformierte der Autokorrelationsfunktion des Ausgangssignals ist nach der Theorie der LTI Systeme gleich der des Eingangssignals multipliziert mit dem Betragsquadrat der Impulsantwort (Greensfunktion) des Systems. Nach dem Wiener-Chintchin-Theorem ist die Fouriertransformierte der Autorkorrelationsfunktion gleich der spektralen Leistungsdichte und die Leistungsdichte des Ausgangssignals ist somit gleich der des Eingangssignals multipliziert mit der Leistungs-Übertragungsfunktion analog zum Fall periodischer Signal bei LTIs.

Weblinks

Anmerkungen

  1. "stationär" heißt, die Autokorrelationsfunktion r_{xx}(\tau) = E\left(x(t)x^*(t-\tau)\right) der Zufallsfunktion x (t) hängt nicht von t, sondern nur τ ab. Genauer handelt es sich um stationäre Zufallsprozesse "im weiteren Sinn" (Wide Sense Stationary Random Processes).
  2. das heißt durch einfaches Einsetzen der Fouriertransformierten, die in diesem Fall im Gegensatz zu Zufallsprozess-Signalen existieren.
  3. Alexander Chintchin: Korrelationstheorie der stationären stochastischen Prozesse. In: Mathematische Annalen Band 109, 1934. Als „Satz von Chintchin über die Korrelationsfunktion“ bewiesen z.B. in Gnedenko: Einführung in die Wahrscheinlichkeitstheorie. Verlag Harri Deutsch 1978, Seite 310.
  4. Norbert Wiener: Generalized harmonic analysis. In: Acta Mathematica Band 55, 1930, sowie in seinem Buch Extrapolation, Intrapolation and Smoothing of Stationary Time Series. MIT 1949. Bekannt wurde die diskrete Version auch durch die Artikel von Norman Levinson, Journal of Mathematical Physics Bd. 25, 1957, S.261, Bd. 20, S.110
  5. W.Feller Introduction to probability theory, Bd.2, S.640

Wikimedia Foundation.

Игры ⚽ Поможем написать курсовую

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Wiener–Khinchin theorem — The Wiener–Khinchin theorem (also known as the Wiener–Khintchine theorem and sometimes as the Wiener–Khinchin–Einstein theorem or the Khinchin–Kolmogorov theorem) states that the power spectral density of a wide sense stationary random process is …   Wikipedia

  • Khintchine — Alexander Chintschin Alexander Jakowlewitsch Chintschin (andere Schreibweise: Aleksandr Jakovlevich Khintchine, russisch Александр Яковлевич Хинчин, wissenschaftliche Transliteration: Aleksandr Âkovlevič Hinčin; * 7. / 19. Juli 1894 in Kondrowo… …   Deutsch Wikipedia

  • Norbert Wiener — Born November 26, 1894(1894 11 26) Columbia, Missouri, U.S …   Wikipedia

  • Optical coherence tomography — Intervention Optical Coherence Tomography (OCT) image of a sarcoma MeSH …   Wikipedia

  • Aleksandr Khinchin — Alexander Chintschin Alexander Jakowlewitsch Chintschin (andere Schreibweise: Aleksandr Jakovlevich Khintchine, russisch Александр Яковлевич Хинчин, wissenschaftliche Transliteration: Aleksandr Âkovlevič Hinčin; * 7. / 19. Juli 1894 in Kondrowo… …   Deutsch Wikipedia

  • Aleksandr Yakovlevich Khinchine — Alexander Chintschin Alexander Jakowlewitsch Chintschin (andere Schreibweise: Aleksandr Jakovlevich Khintchine, russisch Александр Яковлевич Хинчин, wissenschaftliche Transliteration: Aleksandr Âkovlevič Hinčin; * 7. / 19. Juli 1894 in Kondrowo… …   Deutsch Wikipedia

  • Alexander Chintschin — Alexander Jakowlewitsch Chintschin (andere Schreibweise: Aleksandr Jakovlevich Khintchine, russisch Александр Яковлевич Хинчин, wissenschaftliche Transliteration: Aleksandr Âkovlevič Hinčin; * 7. / 19. Juli 1894 in Kondrowo in der heutigen Oblast …   Deutsch Wikipedia

  • Chintschin — Alexander Chintschin Alexander Jakowlewitsch Chintschin (andere Schreibweise: Aleksandr Jakovlevich Khintchine, russisch Александр Яковлевич Хинчин, wissenschaftliche Transliteration: Aleksandr Âkovlevič Hinčin; * 7. / 19. Juli 1894 in Kondrowo… …   Deutsch Wikipedia

  • Alexander Jakowlewitsch Chintschin — Alexander Chintschin Alexander Jakowlewitsch Chintschin (andere Schreibweise: Aleksandr Jakovlevich Khintchine, russisch Александр Яковлевич Хинчин, wissenschaftliche Transliteration: Aleksandr Jakovlevič Chinčin; * 7. / 19. Juli 1894 in… …   Deutsch Wikipedia

  • Aleksandr Khinchin — Aleksandr Yakovlevich Khinchin (Russian Александр Яковлевич Хинчин, French Alexandre Khintchine) (July 19,1894 – November 18, 1959) was a Russian mathematician and one of the most significant people in the Soviet school of probability theory. He… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”