Diamantstruktur

Diamantstruktur

Die Diamantstruktur (auch Diamantgitter oder Diamanttyp) ist eine Kristallstruktur, das heißt das Anordnungsmuster der Atome eines kristallinen Materials. Entdeckt wurde dieser Strukturtyp beim Diamant, eine Modifikation des Kohlenstoffs, aber auch weitere Materialien mit Atomen aus der 4. Hauptgruppe (vierwertige Elemente) können in dieser Struktur kristallisieren, beispielsweise Silicium, Germanium und Silicium-Germanium-Legierungen sowie α-Zinn. Analog zum kristallinen Diamant können auch niedermolekulare Verbindungen des Kohlenstoffs die Diamantstruktur aufweisen, sogenannte Diamantoide. Ihr einfachster Vertreter ist das Adamantan.

Inhaltsverzeichnis

Aufbau

Vier sp3-Hypridorbitale richten sich tetraedrisch in gleichem Winkel zueinander aus.

Die Diamantstruktur besteht aus einem kubisch-flächenzentrierten Gitter und der Basis {(0,0,0), (1/4,1/4,1/4)}. Anschaulich kann man die Diamantstruktur auch als Kombination zweier ineinander gestellter kubisch-flächenzentrierter Gitter beschreiben, die um 1/4 der Raumdiagonale gegeneinander verschoben sind.

Jedes Kohlenstoffatom ist gleichwertig mit vier Nachbaratomen kovalent gebunden. Die Diamantstruktur entspricht damit der Zinkblende-Struktur (ZnS) mit dem Unterschied, dass die beiden kristallographischen Lagen (0,0,0) und (1/4,1/4,1/4) in der Zinkblende-Struktur von zwei verschiedenen Ionen besetzt sind. In beiden Strukturen ist jedes Atom mit 4 Atomen des gleichen Elements (beim Diamant C-Atome) verbunden. Der Grund dafür ist die Hybridisierung der Orbitale der äußersten Schale des Grundzustandes (Kohlenstoff: 1s22s22p2) zu vier sp3-Hybridorbitalen (1s2 2[sp3]4). Diese vier Orbitale sind aufgrund der elektromagnetischen Abstoßung mit größtmöglichem Abstand bzw. Winkel (109,5°) zueinander symmetrisch im Raum orientiert, sie zeigen in die Ecken eines gedachten Tetraeders.

Vereinfachende zweidimensionale Abbildungen von Gittern mit vierwertigen Elementen zeigen ein gewöhnliches zweidimensionales Gittermuster. Im dreidimensionalen Raum nehmen die vier Valenzelektronen jedoch eine Position ein, die den vier Ecken eines Tetraeders entspricht, wobei der Atomkern im Mittelpunkt des Tetraeders liegt. In 2D-Darstellungen der 3D-Struktur von Diamanten wird das Atom gezeichnet, von dem aus sich die vier Ecken des Tetraeders in vier Bindungen (Valenzen) ausstrecken.

Bei Aufsicht auf diese Tetraeder der Diamantstruktur liegen drei Valenzen an den drei Ecken eines gleichseitigen Dreiecks und berühren drei benachbarte Atome, die in einer gemeinsamen Ebene liegen. Die vierte Valenz liegt in der Mitte des Dreiecks und berührt ein viertes benachbartes Atom in einer anderen Ebene – näher zum Betrachter hin bzw. weiter vom Betrachter weg. In der Diamantstruktur sind die Tetraeder abwechselnd so gedreht, dass die vierte Valenz zum Betrachter zeigt bzw. von ihm weg.

Kristallografische Raumgruppe

Stereografische Projektion der Diamantstruktur in [111]-Richtung

Die Diamantstruktur hat die Raumgruppe Fd\bar3m.[1][2] Es handelt sich also um eine kubische Kristallstruktur.

F d \bar3 m ist die gekürzte Schreibweise von F 4_1/d\ \bar3\ 2/m. F bedeutet, dass das Bravais-Gitter flächenzentriert ist, 4_1/d\, bedeutet eine 41-Schraubenachse parallel der kristallographischen a-Achse (Drehung um 90° und Verschiebung (Translation) um 1/4 in Richtung der a-Achse), die 41-Schraubenachse steht weiterhin senkrecht auf einer „Diamantgleitspiegelebene“ (d). Entlang der Raumdiagonalen der Elementarzelle befinden sich dreizählige Drehinversionsachsen \bar3. Parallel zu den Diagonalen der Flächen der Elementarzelle befinden sich zweizählige Drehachsen (2) und senkrecht dazu Spiegelebenen (m). (Siehe dazu auch: Hermann-Mauguin-Symbol)

Eigenschaften

Wie erwähnt kristallisieren die typischen vierwertigen Halbleiter wie Silicium und Germanium in der Diamantstruktur. Durch die starken kovalenten Bindungen existieren keine freien Elektronen und die Materialien weisen bei T = 0 K (Temperatur am absoluten Nullpunkt) abgesättigte Valenzen, d. h. vollbesetzte Valenzbänder (VB), auf. Das Leitungsband (LB) ist hingegen völlig leer. Reine Halbleiter ohne Kristallbaufehler sind daher bei T = 0 K Isolatoren, denn es stehen keine Ladungsträger (Elektronen oder Defektelektronen) für den Stromtransport zur Verfügung.

Die Bandstruktur von Materialien mit Diamantstruktur weist meist eine Energielücke (Bandlücke) auf. Diese nimmt je nach Element unterschiedliche Werte an (Eg,Diamant =  5,4 eV, Eg,Silicium = 1,1 eV). Bei den geringen Werten für die Energielücke bei Silicium und Germanium (0,67 eV) reicht bereits die Wärmeenergie bei Raumtemperatur aus, um Elektronen aus dem Valenzband in das Leitungsband zu heben. Die Elektronen im LB und die zurückbleibenden Defektelektronen im VB können nun unter dem Einfluss eines von außen angelegten elektrischen Feldes den elektrischen Strom leiten. Dieser Übergang der Elektronen vom Valenzband zum Leitungsband kann auch durch Photonen verursacht werden (photoelektrischer Effekt). Außerdem kann die Energielücke durch gezieltes Verunreinigen (Dotierung) und den damit entstehenden Haftstellen (ortsgebunden) verringert und somit die Leitfähigkeit erhöht werden (Störstellenleitung).

Da beim Diamant nur vier der acht tetraedischen Lücken von Kohlenstoffatomen besetzt sind, ist das Gitter relativ stark aufgeweitet. Die Packungsdichte des Diamantgitters – nicht nur beim Diamant – ist somit vergleichsweise klein, nur etwa 34 Prozent des verfügbaren Gittervolumens sind besetzt.

Die besondere Härte von Diamant lässt sich mit dem Gittermodell nicht erklären, sie ist eine Folge der besonders festen und gerichteten kovalenten Bindungen, die die tetraedischen sp3-Orbitale des Kohlenstoffs eingehen.

Weblinks

 Commons: Diamond cubic – Album mit Bildern und/oder Videos und Audiodateien
  • Rudolf Gross, Achim Marx: Festkörperphysik. Vorlesungsskript zur Vorlesung im WS 1998/1999 und SS 1999. Garching Oktober 2010, S. 28–29 (PDF).

Einzelnachweise

  1. Koji Kobashi: Diamond films: chemical vapor deposition for oriented and heteroepitaxial growth. Elsevier, 2005, ISBN 9780080447230, 2.1 Structure of diamond, S. 9.
  2. Text zu kubischem Diamant. Universität Konstanz. Abgerufen am 30. August 2011.

Bravais-Gitter | Kristallsystem | Tetraederlücke


Wikimedia Foundation.

Игры ⚽ Поможем решить контрольную работу

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Diamant-Struktur — Kubische Kristallstruktur des Diamanten. Als Diamantstruktur (auch Diamantgitter oder Diamanttyp) bezeichnet man eine bestimmte Kristallstruktur, also ein bestimmtes Anordnungsmuster der Atome. Der Name rührt daher, dass das erste entdeckte… …   Deutsch Wikipedia

  • Diamantgitter — Kubische Kristallstruktur des Diamanten. Als Diamantstruktur (auch Diamantgitter oder Diamanttyp) bezeichnet man eine bestimmte Kristallstruktur, also ein bestimmtes Anordnungsmuster der Atome. Der Name rührt daher, dass das erste entdeckte… …   Deutsch Wikipedia

  • Diamantkristall — Kubische Kristallstruktur des Diamanten. Als Diamantstruktur (auch Diamantgitter oder Diamanttyp) bezeichnet man eine bestimmte Kristallstruktur, also ein bestimmtes Anordnungsmuster der Atome. Der Name rührt daher, dass das erste entdeckte… …   Deutsch Wikipedia

  • Diamanttyp — Kubische Kristallstruktur des Diamanten. Als Diamantstruktur (auch Diamantgitter oder Diamanttyp) bezeichnet man eine bestimmte Kristallstruktur, also ein bestimmtes Anordnungsmuster der Atome. Der Name rührt daher, dass das erste entdeckte… …   Deutsch Wikipedia

  • Borazon — Strukturformel Allgemeines Name Bornitrid Summenformel BN …   Deutsch Wikipedia

  • Elementhalbleiter — Ein Wafer (einkristalline Silizium Scheibe) mit mikroelektronischen Bauelementen Unter einem Halbleiter versteht man einen Festkörper, den man hinsichtlich seiner elektrischen Leitfähigkeit sowohl als Leiter als auch als Nichtleiter betrachten… …   Deutsch Wikipedia

  • Gitterführung — Die Gitterführung bzw. der Gitterführungseffekt (englisch: channelling) ist ein physikalisches Phänomen, das in der Ionenstrahlphysik auftritt. Es beschreibt das nahezu ungestörte Eindringen eines Ions in einen Einkristall aufgrund von linearen… …   Deutsch Wikipedia

  • Halbleiterphysik — Ein Wafer (einkristalline Silizium Scheibe) mit mikroelektronischen Bauelementen Unter einem Halbleiter versteht man einen Festkörper, den man hinsichtlich seiner elektrischen Leitfähigkeit sowohl als Leiter als auch als Nichtleiter betrachten… …   Deutsch Wikipedia

  • Pyrolytisches Bornitrid — Strukturformel Allgemeines Name Bornitrid Summenformel BN …   Deutsch Wikipedia

  • SIMOX-Technik — Die Ionenimplantation ist ein Verfahren zur Einbringung von Fremdatomen (in Form von Ionen) in ein Grundmaterial (Dotierung). Auf diese Weise lassen sich die Materialeigenschaften (meistens die elektrischen Eigenschaften) des Grundmaterials… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”