Diffeomorphismus

Diffeomorphismus

In der Mathematik, insbesondere in den Gebieten Analysis, Differentialgeometrie und Differentialtopologie, ist ein Diffeomorphismus eine bijektive, stetig differenzierbare Abbildung, deren Umkehrabbildung auch stetig differenzierbar ist.

Dabei können die Definitions- und Zielbereiche der Abbildung offene Mengen des endlichdimensionalen reellen Vektorraums \R^n sein oder allgemeiner differenzierbare Mannigfaltigkeiten. Je nach Differenzierbarkeitsklasse spricht man von Ck-Diffeomorphismen (k \in \{1,2,\dots,\infty,\omega\}).

Bild eines rechtwinkligen Netzes auf einem Quadrat unter einem Diffeomorphismus vom Quadrat auf sich selbst.

Inhaltsverzeichnis

Definition

Im Vektorraum

Eine Abbildung f : U \to V zwischen offenen Teilmengen U,V des reellen Vektorraums \R^n heißt Diffeomorphismus, falls sie bijektiv ist und sowohl f als auch die Umkehrabbildung f − 1 überall stetig differenzierbar sind.

Sind f und f − 1 sogar k-mal stetig differenzierbar („von der Klasse Ck“, k =1, 2, 3, \dots) so nennt man f einen Ck-Diffeomorphismus. Sind f und f − 1 unendlich oft differenzierbar („von der Klasse C^\infty“), so bezeichnet man f als C^\infty-Diffeomorphismus, sind f und f − 1 beide reell-analytisch („von der Klasse Cω“) so nennt man f einen Cω-Diffeomorphismus.

Eine Abbildung f : U \to V zwischen offenen Teilmengen U, V \subset \R^n heißt lokaler Diffeomorphismus, falls jeder Punkt p \in U eine offene Umgebung W \subset U besitzt, so dass deren Bild f(W)\subset V offen und die Einschränkung f|_W: W \to f(W) von f auf W ein Diffeomorphismus ist.

Auf differenzierbaren Mannigfaltigkeiten

Auf differenzierbaren Mannigfaltigkeiten wird der Begriff analog definiert:

Eine Abbildung f : M \to N  zwischen zwei differenzierbaren Mannigfaltigkeiten M und N heißt Diffeomorphismus falls sie bijektiv ist und sowohl f als auch die Umkehrabbildung stetig differenzierbar sind. Wie oben werden die Begriffe Ck-, C^\infty- und Cω-Diffeomorphismus und lokaler Diffeomorphismus definiert.

Zwei Mannigfaltigkeiten M und N heißen diffeomorph, falls es einen Diffeomorphismus f von M nach N gibt. Mannigfaltigkeiten, die diffeomorph sind, unterscheiden sich bezüglich ihrer differenzierbaren Struktur nicht.

Eigenschaften

  • Ein Diffeomorphismus ist immer auch ein Homöomorphismus, die Umkehrung gilt aber nicht.
  • Aus der Differenzierbarkeit der Umkehrabbildung folgt, dass in jedem Punkt p die Ableitung von f (als lineare Abbildung von \R^n nach \R^n bzw. vom Tangentialraum TpM nach Tf(p)N) invertierbar (bijektiv, regulär, von maximalem Rang) ist.
  • Ist umgekehrt die Abbildung f bijektiv und (k-mal) stetig differenzierbar und ist ihre Ableitung an jeder Stelle invertierbar, so ist f ein (Ck)-Diffeomorphismus.

Eine stärkere Aussage enthält der Satz über die Umkehrabbildung:

Satz über die Umkehrabbildung

Eine differenzierbare Abbildung mit invertierbarem Differential ist lokal ein Diffeomorphismus. Genauer formuliert:

Sei f : U \to V stetig differenzierbar und die Ableitung von f sei an der Stelle p \in U invertierbar. Dann existiert eine offene Umgebung W von p in U, so dass f(W) offen und die Einschränkung f|_W : W \to f(W) ein Diffeomorphismus ist.

Diese Aussage gilt sowohl für Abbildungen zwischen offenen Mengen des \R^n als auch für Abbildungen zwischen Mannigfaltigkeiten.

Beispiele

  • Die Abbildung f: (-1,1) \to \mathbb{R}, wobei f(t) = \tan\left(t \cdot \pi /2\right), ist ein Diffeomorphismus zwischen der offenen Menge (-1,1) und der Menge der reellen Zahlen \mathbb{R}. Damit ist das offene Intervall (-1,1) diffeomorph zu \mathbb{R}.
  • Die Abbildung f : \mathbb{R} \to \mathbb{R}, f(x) = x3, ist bijektiv und differenzierbar. Sie ist aber kein Diffeomorphismus, denn f − 1 ist an der Stelle 0 nicht differenzierbar.

Diffeomorphie und Homöomorphie

Bei differenzierbaren Mannigfaltigkeiten in Dimension kleiner 4 impliziert Homöomorphie immer Diffeomorphie: Zwei differenzierbare Mannigfaltigkeiten der Dimension kleiner oder gleich 3, die homöomorph sind, sind auch diffeomorph. D. h., wenn es einen Homöomorphismus gibt, dann gibt es auch einen Diffeomorphismus. Dies bedeutet nicht, dass jeder Homöomorphismus ein Diffeomorphismus wäre. In höheren Dimensionen ist dies nicht unbedingt der Fall.

Ein prominentes Beispiel ist die Milnor-Sphäre, nach John Willard Milnor: Sie ist homöomorph zur normalen 7-dimensionalen Sphäre, aber nicht diffeomorph.

Literatur

  • Klaus Jänich: Vektoranalysis. 5. Auflage. Springer Verlag, Berlin u. a. 2005, ISBN 3-540-23741-0 (Springer-Lehrbuch).
  • D. K. Arrowsmith, C. M. Place: An Introduction to Dynamical Systems. Cambridge University Press, Cambridge u. a. 1990, ISBN 0-521-30362-1.

Wikimedia Foundation.

Игры ⚽ Нужна курсовая?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Diffeomorph — In der Mathematik, insbesondere in den Gebieten Analysis, Differentialgeometrie und Differentialtopologie, ist ein Diffeomorphismus eine bijektive stetig differenzierbare Abbildung, deren Umkehrabbildung auch stetig differenzierbar ist. Dabei… …   Deutsch Wikipedia

  • Diffeomorphie — In der Mathematik, insbesondere in den Gebieten Analysis, Differentialgeometrie und Differentialtopologie, ist ein Diffeomorphismus eine bijektive stetig differenzierbare Abbildung, deren Umkehrabbildung auch stetig differenzierbar ist. Dabei… …   Deutsch Wikipedia

  • Differenzierbare Mannigfaltigkeit — In der Mathematik sind differenzierbare Mannigfaltigkeiten ein Oberbegriff für Kurven, Flächen und andere geometrische Objekte, die – aus der Sicht der Analysis – lokal aussehen wie ein euklidischer Raum. Im Unterschied zu topologischen… …   Deutsch Wikipedia

  • Glatte Mannigfaltigkeit — In der Mathematik sind differenzierbare Mannigfaltigkeiten ein Oberbegriff für Kurven, Flächen und andere geometrische Objekte. Im Unterschied zu topologischen Mannigfaltigkeiten ist es auf differenzierbaren Mannigfaltigkeiten möglich, über… …   Deutsch Wikipedia

  • Differentialstruktur — Eine differenzierbare Struktur (auch Differentialstruktur) beschreibt wichtige Eigenschaften einer Mannigfaltigkeit, die zwischen denen der Topologie und Geometrie liegen. Eine Mannigfaltigkeit wird dabei durch Karten beschrieben, d.h. durch… …   Deutsch Wikipedia

  • Distribution (Mathematik) — Eine Distribution bezeichnet im Bereich der Mathematik eine besondere Art eines Funktionals, also ein Objekt aus der Funktionalanalysis. Die Theorie der Distributionen ermöglicht es, Ableitungen für Funktionen zu bestimmen, die im klassischen… …   Deutsch Wikipedia

  • Glatte Struktur — Eine differenzierbare Struktur (auch Differentialstruktur) beschreibt wichtige Eigenschaften einer Mannigfaltigkeit, die zwischen denen der Topologie und Geometrie liegen. Eine Mannigfaltigkeit wird dabei durch Karten beschrieben, d.h. durch… …   Deutsch Wikipedia

  • Homeomorph — Ein klassisches Beispiel für einen Homöomorphismus: eine Kaffeetasse und ein Donut – topologisch betrachtet dasselbe Ein Homöomorphismus (nicht zu verwechseln mit Homomorphismus und Homotopie) ist ein zentraler Begriff im mathematischen… …   Deutsch Wikipedia

  • Homeomorphismus — Ein klassisches Beispiel für einen Homöomorphismus: eine Kaffeetasse und ein Donut – topologisch betrachtet dasselbe Ein Homöomorphismus (nicht zu verwechseln mit Homomorphismus und Homotopie) ist ein zentraler Begriff im mathematischen… …   Deutsch Wikipedia

  • Homöomorph — Ein klassisches Beispiel für einen Homöomorphismus: eine Kaffeetasse und ein Donut – topologisch betrachtet dasselbe Ein Homöomorphismus (nicht zu verwechseln mit Homomorphismus und Homotopie) ist ein zentraler Begriff im mathematischen… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”