Dimension (Größensystem)

Dimension (Größensystem)

In einem Größensystem hat jede physikalische Größe eine Dimension. Die Dimension einer Größe drückt deren qualitative Eigenschaften aus. Im dazugehörigen Einheitensystem entspricht jeder Dimension eine kohärente Einheit. Diese dient zum Ausdruck der quantitativen Eigenschaften aller Größen der zugehörigen Dimension. Den Dimensionen von Basisgrößen entsprechen also die Basiseinheiten. Da es für jede Dimension eine zugehörige kohärente Einheit gibt, könnte man eine Dimension als Einheitenart oder -klasse betrachten.

Inhaltsverzeichnis

Dimension einer Basisgröße

Physikalische
Größe
Dimension Kohärente
Einheit
Länge l, Weg s Länge L Meter (m)

Jeder Basisgröße wird eine Dimension mit demselben Namen zugeordnet. Beispielsweise heißt im internationalen Größensystem (ISQ) die Dimension der Basisgröße Länge ebenfalls Länge. Eine Größe wird mit einem kursiv geschriebenen Buchstaben symbolisiert − im Falle der Länge mit „l“. Das Symbol einer Dimension ist ein aufrecht stehender, serifenlos geschriebener Großbuchstabe − im Falle der Länge „L“. Die entsprechende kohärente Einheit der Dimension Länge ist der Meter.

Die folgende Tabelle zeigt die Dimensionen der sieben Basisgrößen des internationalen Größensystems sowie die entsprechenden Basiseinheiten des zugehörigen internationalen Einheitensystems (SI) gemäß der 8. Auflage der sog. SI-Broschüre [1]

Basisgröße und
Dimensionsname
Größen-
symbol
Dimensions-
symbol
Basiseinheit Einheiten-
zeichen
Länge l L Meter m
Masse m M Kilogramm kg
Zeit t T Sekunde s
Stromstärke I oder i I Ampere A
Thermodynamische
Temperatur
T Θ Kelvin K
Stoffmenge
(Substanzmenge)
n N Mol mol
Lichtstärke IV J Candela cd

Die Anzahl der Basisgrößen bestimmt den Grad des Größensystems und die Dimensionalität des Einheitensystems. Das ISQ ist demnach ein Größensystem siebten Grades und das zugehörige SI ein sieben-dimensionales Einheitensystem.

Dimension einer abgeleiteten Größe

dim Q = Xα · Yβ · Zγ
Angabe der Dimension einer beliebigen Größe Q in einem Größensystem dritten Grades (mit drei Basisgrößen der Dimensionen X, Y und Z).

Die Dimension einer abgeleiteten Größe drückt den Bezug ihrer kohärenten Einheit zu den Basiseinheiten als Produkt von Potenzen (Potenzprodukt) aus. Jede Potenz besteht aus einer Basis und einem Exponenten. Die Basis ist die Dimension einer Basisgröße. Der Exponent heißt Dimensionsexponent dieser Basisgröße. Die als α, β, γ, ... bezeichneten Dimensionsexponenten können jeweils Null, sowie eine positive oder negative Zahl eines kleinen Betrages (im Allgemeinen < 10) annehmen. Neben ganzzahligen Exponenten sind in einigen Größensystemen auch nicht-ganzzahlige Brüche − oft in Schritten zu 1/2 − üblich.

Im internationalen Größensystem wird die Dimension einer beliebigen Größe Q durch folgende Dimensionsgleichung angegeben:

dim QLα · Mβ · Tγ · Iδ · Θε · Nζ · Jη

Entsprechend kann die kohärente Einheit derselben Größe Q im internationalen Einheitensystem durch folgende Einheitengleichung angegeben werden:

[Q] = mα · kgβ · sγ · Aδ · Kε · molζ · cdη

Verschiedene Größen derselben kohärenten Einheit haben auch dieselbe Dimension. Manchmal lassen sich unter diesen Größen auch verschiedene Größenarten unterscheiden. Beispielsweise haben die Größen Durchmesser, Wellenlänge und Niederschlagsmenge alle dieselbe kohärente SI-Einheit − nämlich den Meter − die Basiseinheit der Länge. Daher haben sie auch dieselbe Dimension, und zwar die Länge, mit dem Symbol „L“. Im Allgemeinen werden Durchmesser und Wellenlänge zur selben Größenart gezählt, nicht aber die Niederschlagsmenge. Klare Definitionen zur Abgrenzung verschiedener Größenarten existieren jedoch nicht. Aus dieser Sichtweise ergibt sich, dass Größen derselben Dimension nicht unbedingt derselben Größenart angehören müssen. Umgekehrt haben Größen derselben Größenart immer dieselbe Dimension. Größen unterschiedlicher Dimension können daher niemals zur gleichen Größenart gezählt werden.

Auch abgeleitete Größen können die Dimension einer Basisgröße haben.

Größen, die im Größensystem die Dimension Eins (1) haben, nennt man dimensionslose Größen. Solche Größen können ohne Einheit als reine Zahlen angegeben werden, aber zwecks Anschaulichkeit werden hier häufig sogenannte Hilfseinheiten verwendet. Auch in zusammengesetzten Einheiten empfiehlt es sich manchmal im Interesse der Deutlichkeit, statt der Zahl 1 spezielle Einheiten mitzuführen, wie beispielsweise rad/s (Radiant pro Sekunde) statt s−1 für eine Winkelgeschwindigkeit.

Siehe auch

Einzelnachweise

  1. BIPM: The International System of Units (The so-called „SI Brochure“), 8th edition 2006.

Wikimedia Foundation.

Игры ⚽ Нужна курсовая?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Dimension — steht für: die in einem Größensystem festgelegte Dimension einer physikalischen Größe, siehe Dimension (Größensystem) die Anzahl der Freiheitsgrade in einem bestimmten mathematischen Raum im Allgemeinen, siehe Dimension (Mathematik) die Anzahl… …   Deutsch Wikipedia

  • Dimension (Physik) — In einem Größensystem hat jede physikalische Größe eine Dimension. Die Dimension einer Größe drückt deren qualitative Eigenschaften aus. Im dazugehörigen Einheitensystem entspricht jeder Dimension eine kohärente Einheit. Diese dient zum Ausdruck… …   Deutsch Wikipedia

  • Physikalische Dimension — Dimension steht für: die in einem Größensystem festgelegte Dimension einer physikalischen Größe, siehe Dimension (Größensystem) die Anzahl der Freiheitsgrade in einem bestimmten mathematischen Raum, siehe allgemein Dimension (Mathematik) oder für …   Deutsch Wikipedia

  • Größensystem — Ein Größensystem dient der systematischen Einordnung von Größen. Es wird nach praktischen Gesichtspunkten durch die Festlegung einer oder mehrerer Basisgrößen definiert, aus denen sich nach vereinbarten Rechenvorschriften weitere abgeleitete… …   Deutsch Wikipedia

  • Größe der Dimension Eins — Eine dimensionslose Größe (korrekte Bezeichnung: Größe der Dimension Eins) ist eine physikalische Größe, die durch eine reine Zahl ohne Maßeinheit angegeben werden kann. Zwar werden der Deutlichkeit zuliebe in manchen Fällen auch hier Einheiten… …   Deutsch Wikipedia

  • DIN 1301 — Das Internationale Einheitensystem, abgekürzt SI (von frz.: Système international d’unités), ist das auf dem internationalen Größensystem (ISQ) basierende Einheitensystem. Dieses 1960 eingeführte metrische Einheitensystem ist heute das weltweit… …   Deutsch Wikipedia

  • ISO 1000 — Das Internationale Einheitensystem, abgekürzt SI (von frz.: Système international d’unités), ist das auf dem internationalen Größensystem (ISQ) basierende Einheitensystem. Dieses 1960 eingeführte metrische Einheitensystem ist heute das weltweit… …   Deutsch Wikipedia

  • Internationale Einheiten — Das Internationale Einheitensystem, abgekürzt SI (von frz.: Système international d’unités), ist das auf dem internationalen Größensystem (ISQ) basierende Einheitensystem. Dieses 1960 eingeführte metrische Einheitensystem ist heute das weltweit… …   Deutsch Wikipedia

  • Le Système international d'unités — Das Internationale Einheitensystem, abgekürzt SI (von frz.: Système international d’unités), ist das auf dem internationalen Größensystem (ISQ) basierende Einheitensystem. Dieses 1960 eingeführte metrische Einheitensystem ist heute das weltweit… …   Deutsch Wikipedia

  • SI-Basiseinheit — Das Internationale Einheitensystem, abgekürzt SI (von frz.: Système international d’unités), ist das auf dem internationalen Größensystem (ISQ) basierende Einheitensystem. Dieses 1960 eingeführte metrische Einheitensystem ist heute das weltweit… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”