Funknetz

Funknetz

Ein Funknetz ist ein Netzwerk, in welchem Informationen mittels elektromagnetischer Wellen übertragen werden. Es ist ein leitungsloses Telekommunikationssystem, in dem die Methoden der Funktechnik genutzt werden.

In der Anwendung gibt es eine grobe Unterscheidung nach:

  1. gerichtete Kommunikation
  2. ungerichtete Verfahren
  3. unidirektionale Übertragung (nur in einer Richtung, das heißt Teilnehmer im Funknetz enthalten entweder nur einen Empfänger oder nur einen Sender; siehe auch Rundfunk) und bidirektionale Übertragung (jeder Teilnehmer im Funknetz enthält sowohl einen Empfänger als auch einen Sender).
  4. digitale und nicht-digitale Übertragung
Funknetzplanung in der DDR

Inhaltsverzeichnis

Gerichtete Kommunikation

Bei einer gerichteten Kommunikation werden die Daten gebündelt entlang einer gewünschten Strecke gesendet. Die Sende- und Empfangsantennen müssen exakt aufeinander ausgerichtet sein. Vielfach werden aber auch Reflexionsflächen benutzt, die ähnlich einem Spiegel den gerichteten Strahl umlenken, um beispielsweise Täler zu erreichen. Die Antennen müssen eine ausgeprägte Richtcharakteristik besitzen (zum Beispiel Parabolantennen, Hornstrahler). Gründe für die gerichtete Kommunikation sind unter anderem: Störungsarmut, größere Abhörsicherheit, weniger Gleichkanalstörungen, geringerer Sendeleistungsverbrauch, mehrfache Nutzung der gleichen Frequenz.

Laser-Strecke

Die drahtlose Kommunikation über Laser wird Optischer Richtfunk genannt.

Richtfunk

  • Beispiele: GSM-Netz (Abis-Schnittstelle zwischen BTS und BSC)

Satelliten-Direktfunk

Ungerichtete Kommunikation

Terrestrischer Rundfunk

Beispiele: terrestrisches Fernsehen, Hörfunk im Bereich der Langwelle, Mittelwelle, Kurzwelle und Ultrakurzwelle

Nichtöffentlicher Landfunkdienst

  • BOS-Dienste (z.B. Polizei, Feuerwehr, Rettungsdienst usw.) verwenden zur Kommunikation analoge Funknetze mit Wellenlängen im 2-m- und 4-m-Bereich (BOS-Funk). Der Einsatz digitaler Funknetze nach dem TETRA-Standard ist in Planung, nachdem sich dieses gegen die Konkurrenzprojekte Tetrapol und BOS-GSM durchgesetzt hat. Die BOS sollen bis 2013 mit digitalem Funk in ganz Deutschland ausgestattet sein. In der Stadt und im Landkreis Aachen arbeitet man bereits im Wirkbetrieb, nachdem dieses System einen grenzüberschreitenden Probebetrieb durchlaufen hat. Mit dieser Technik können Bilder und Pläne per Funk übertragen werden. Bei der Fußball-Weltmeisterschaft 2006 wurde die Technik in drei Austragungsorten getestet.

Kommerzieller Funk

Betriebe nutzen für den Flottenfunk typisch Frequenzen im 70-cm-Bereich und den Chekker-Dienst. Auch der Seefunk ist ein Funknetz.

Zeitzeichendienste

An einigen Standorten werden leistungsstarke Sender genau definierter Frequenz betrieben, die im Dauerbetrieb Zeitzeichen senden. Sowohl Sendefrequenz als auch Takt der Zeitzeichen werden von Atomuhren gesteuert. Diese Signale werden beispielsweise von Funkweckern empfangen und korrigieren die Anzeige der eingebauten Uhr. Beispiele sind DCF77, MSF, usw.

Amateurfunk

Privatleute ohne kommerzielle Interessen dürfen ebenfalls Funkstellen auf dafür frei gehaltenen Frequenzbereichen betreiben und werden dann als Funkamateure bezeichnet. Voraussetzung ist eine Prüfung bei der Zulassungbehörde, nach deren Bestehen dem Betreffenden ein international eindeutiges Rufzeichen zugeteilt wird. Erlaubte Betriebsarten sind Morsen, Sprechfunk, Übermittlung von Fernsehbildern und digitale Datenübertragung. Funknetze im Amateurfunkdienst sind z.B. das Packet Radio-Netz, bei dem die Teilnehmer Nachrichten über vernetzte Relaisstationen oder Digipeater austauschen und auch z.B. auch Endgeräten wie modifizierten Funkmeldeempfängern zugänglich machen. Weitere Einzelheiten werden in Amateurfunkdienst beschrieben.

In Not- und Katastrophenfällen schließen sich Funkamateure zusammen, um zusätzliche Kommunikationswege bereitzustellen - Notfunk. Oft werden dann Relaisstationen mit eigener Stromversorgung für die lokale Kommunikation oder Amateurbänder im Kurzwellenbereich zum Überbrücken größerer Entfernungen genutzt.

Satelliten-Rundfunk

Interkontinental werden Funknetze durch die Verwendung von geostationären Satelliten ermöglicht, die als Reflektor und Verstärker fungieren. Auch darüber lassen sich Computernetzwerke und Telefonieanwendungen (z. B. Iridium) oder Satelliten-Fernsehen realisieren.

Mobilfunk

Im Hausgebrauch findet sich mittlerweile häufig die Verwendung von Schnurlostelefonen nach dem DECT-Standard.

Lokale Netzwerke

In der EDV teilt man insbesondere bidirektionale Funknetze nach ihrer Reichweite ein:

  • Funknetze für den unmittelbaren Umkreis einer Person (engl. wireless personal area network, Abk. WPAN)
  • lokale Funknetze (engl. wireless local area network IEEE 802.11, Abk. WLAN)
  • Stadtfunknetze (engl. wireless metropolitan area network IEEE 802.16, Abk. WMAN)
  • Weitverkehrsfunknetze (engl. wireless wide area network, Abk. WWAN)

Obwohl diese Einteilung etwas willkürlich und auch nicht exakt definiert ist, haben doch die Funknetze innerhalb jeder Gruppe neben der Reichweite weitere Gemeinsamkeiten bezüglich Datenrate, Leistungsaufnahme, Mobilität der Teilnehmer und Kosten für Teilnehmergeräte, was die Einteilung sinnvoll erscheinen lässt. Angestrebt werden eine große Reichweite, eine hohe Datenrate, eine geringe Leistungsaufnahme und geringe Kosten sowie eine hohe Mobilität, das heißt, die Verbindung zum Funknetz kann aufrechterhalten werden, wenn sich der Teilnehmer bewegt. In der Praxis verhindern die Gesetze der Physik, dass alle Ziele gleichzeitig erreicht werden.

WPAN

Wireless Personal Area Networks (WPAN) sind hauptsächlich zur Funkverbindung von tragbaren Geräten mit eigener Stromversorgung gedacht. Hierzu gehören beispielsweise PDAs, Laptops, Mobiltelefone, Funktastaturen und -mäuse als auch Funkkopfhörer, Freisprecheinrichtungen oder Spezialanwendungen wie Lego-Roboter. Dem Anwendungszweck entsprechend, sind eine geringe Leistungsaufnahme (und damit eine lange Batterie-/Akkulebensdauer) sowie ein geringer Preis für die Teilnehmergeräte wichtig. Dafür werden eine geringe Reichweite (0,2 m bis 10 m), eine geringere Datenrate (im Allgemeinen weniger als 4 Mbit/s) und eine geringe Mobilität der Teilnehmer in Kauf genommen. Als führende Technik hat sich Bluetooth durchgesetzt. Dieser Standard verdrängt damit die Infrarotdatenübertragung, welche vor Bluetooth Funkverbindungen mit sehr geringer Reichweite realisierte.

WLAN

Wireless Local Area Networks (WLAN) dienen dazu, mobile Geräte wie beispielsweise Notebooks direkt (Ad-hoc-Netz) oder über einen gemeinsamen Zugriffsknoten (Infrastruktur-Netz) zu verbinden. Soll das WLAN mit weiteren Netzen verknüpft werden, so wird in der Regel der Zugriffsknoten mit einem Gateway/Router verbunden. Das Hauptaugenmerk bei WLANs liegt auf einer hohen Datenrate (2008: 11 Mbit/s bis theoretisch 300 Mbit/s). Auch die Reichweite ist in der Regel größer als bei WPANs (100 m bis 300 m), dafür sind die Leistungsaufnahme und der Preis höher. Teilnehmer können sich innerhalb eines WLANs meist ohne Verbindungsabbruch bewegen (höhere Mobilität als in WPANs). Der wichtigste WLAN-Standard ist IEEE 802.11.

WMAN

Wireless Metropolitan Area Networks (WMAN) sind die größte Form eines Funknetzes, bei dem sich die beteiligten Zugangsknoten über eine Stadt oder eine Region verteilt befinden. Idealerweise sind die Standorte der Funkzugangsknoten so aufgestellt, dass sich die Funkausleuchtungszonen leicht überlappen. Dadurch kann ein Nutzer ein möglichst engmaschiges Funknetz ohne Funklöcher nutzen.

Funktechniken wie "Meshing" (Vermaschen) mit einem dynamischen Routing leisten dabei gute Dienste, um solchen Ansprüchen gerecht zu werden. In Deutschland gibt es bereits einige WMANs von kommerziellen und privaten Betreibern.

Siehe auch: WirelessHART

Weitere Netzwerke

Beispiele: Bluetooth, WIMAX, WISA.

Probleme und Störungen

Hidden Station und Exposed Station

Ein allgemeines Problem bei Rechnernetzen ist die Zerstörung von Nachrichten durch Kollisionen. Diese können entstehen, wenn mehrere Rechner zur gleichen Zeit eine Nachricht senden. Um Kollisionen erkennen zu können, hört eine Station in der Regel ihre eigene Nachricht ab.
Diese Problematik verschärft sich bei Funknetzen, da es hier vorkommen kann, dass sich, aufgrund beschränkter Sendereichweiten, nicht alle Kommunikationspartner wirklich verstehen können. Diese Tatsache kann aus dem Hidden-Station- bzw. Exposed-Station-Problem resultieren.

Beim Hidden-Station-Problem gibt es zwei Sender, die sich gegenseitig nicht verstehen und einen Empfänger, der innerhalb der Reichweite beider Sender ist. Wenn nun beide Sender zur gleichen Zeit an den Empfänger senden wollen, so kollidiert die Nachricht beim Empfänger, ohne dass die Sender dies bemerken.

Beim Exposed-Station-Problem liegen zwei Sender jeweils innerhalb ihrer Reichweiten, wobei beide Sender an einen Empfänger senden, der nicht in der Reichweite des jeweils anderen Senders liegt. Beide Empfänger können jeweils ungehindert ihren Kommunikationspartner verstehen. Je ein Sender bremst jedoch den anderen aus. Durch das Zugriffsverfahren wird das Medium als belegt erkannt und die Station verzögert den Sendeversuch, jedoch hätte das Signal bei Aussendung den Empfänger problemlos erreicht. Der eine Sender ist der Kommunikation des anderen ausgesetzt.

Lösungen

  • ALOHA siehe dort
  • RTS/CTS-Schema

Eine Lösung für diese Probleme ist das RTS/CTS-Schema.

  1. Der Sender sendet an den Empfänger ein RTS-Paket (Request To Send), in dem er dem Empfänger die Größe der Nachricht, die er versenden will, mitteilt
  2. Empfängt der Empfänger ein RTS für sich und hat zuvor kein anderes RTS empfangen, so sendet er ein CTS-Paket (Clear To Send) an den Sender. Wenn der Empfänger zuvor ein anderes RTS empfangen hat, so wartet er mit dem Senden des CTS, bis die andere Übertragung beendet ist.
  3. Empfängt der Sender das CTS, beginnt er mit der Übertragung der Nutzdaten

Das Exposed-Station-Problem kann nur bedingt durch RTS/CTS gelöst werden. Die des Datenverkehrs der anderen Station ausgesetzte Station wird das RTS Frame empfangen jedoch nicht die dazu gehörende Bestätigung (CTS). Ebenso fehlen die positiven Bestätigungen für den Empfang der Daten. Daraus kann eine Station schließen, dass sie zwar im Empfangsbereich eines weiteren Senders ist, jedoch nicht den eigentlichen Empfänger der Daten beeinflusst. Sie könnte also senden ohne den Empfänger zu stören. Dies geht vor allem deshalb, weil es bei günstigen Funkempfängern keine Kollisionserkennung gibt.

Siehe auch

Literatur

  • Jörg Roth: Mobile Computing. Grundlagen, Technik, Konzepte. Heidelberg: dpunkt-Verl., 2002. ISBN 3-89864-165-1

Weblinks


Wikimedia Foundation.

Игры ⚽ Нужен реферат?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Funknetz — Fụnk|netz 〈n. 11〉 1. Netz für Funkverbindungen 2. 〈kurz für〉 Mobilfunknetz ● ein Funknetz aufbauen; sich in ein Funknetz einschalten; mobiles Funknetz * * * Fụnk|netz, das: ↑ Netz (2 a) für die drahtlose Übermittlung von Signalen, Daten o. Ä …   Universal-Lexikon

  • Freies Funknetz — Das Logo von Freifunk.net Freie Funknetze sind WLAN basierte Funknetze, die nicht von kommerziellen Anbietern, sondern von Privatpersonen, Vereinen oder ähnlichen Organisationen angeboten werden. Demnach sind die Benutzer auch gleichzeitig die… …   Deutsch Wikipedia

  • Nokia Nseries — Die Nokia NSeries ist eine Mobiltelefon Produktlinie des finnischen Herstellers Nokia. Telefone dieser Serie sind Multifunktionsgeräte, die insbesondere zum Surfen im Internet verwendet werden können. Ebenso sind Funktionen zur Wiedergabe von… …   Deutsch Wikipedia

  • 100-Dollar-Laptop — Die „Hasenohren“ des XO 1 sind jeweils WLAN Antenne und Schutzabdeckung für die USB Anschlüsse in einem. Der …   Deutsch Wikipedia

  • 100-Dollar Laptop — Die „Hasenohren“ des XO 1 sind jeweils WLAN Antenne und Schutzabdeckung für die USB Anschlüsse in einem. Der …   Deutsch Wikipedia

  • Children's Machine — Die „Hasenohren“ des XO 1 sind jeweils WLAN Antenne und Schutzabdeckung für die USB Anschlüsse in einem. Der …   Deutsch Wikipedia

  • Ein Laptop pro Kind — Die „Hasenohren“ des XO 1 sind jeweils WLAN Antenne und Schutzabdeckung für die USB Anschlüsse in einem. Der …   Deutsch Wikipedia

  • N77 — N95, ein Nseries Gerät Die Nokia Nseries ist eine Mobiltelefon Produktlinie des finnischen Herstellers Nokia. Ein Smartphone der NSeries Reihe kann zur Wiedergabe von Musik, zur Aufzeichnung von Videos, zur Fotografie, zur mobilen Unterhaltung… …   Deutsch Wikipedia

  • N91 — N95, ein Nseries Gerät Die Nokia Nseries ist eine Mobiltelefon Produktlinie des finnischen Herstellers Nokia. Ein Smartphone der NSeries Reihe kann zur Wiedergabe von Musik, zur Aufzeichnung von Videos, zur Fotografie, zur mobilen Unterhaltung… …   Deutsch Wikipedia

  • N93 — N95, ein Nseries Gerät Die Nokia Nseries ist eine Mobiltelefon Produktlinie des finnischen Herstellers Nokia. Ein Smartphone der NSeries Reihe kann zur Wiedergabe von Musik, zur Aufzeichnung von Videos, zur Fotografie, zur mobilen Unterhaltung… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”