Entladungsgefäß einer
Quecksilberdampf-Hochdrucklampe (NARVA NF80, 80 Watt); Schutzglaskolben entfernt; Gesamtansicht mit Schutzglaskolben siehe Quarzglas (Hoch- und Höchstdrucklampen) oder aus
Aluminiumoxid-Keramik (Hochdrucklampen). Im Gehäuse befinden sich zwei
Elektroden, zwischen denen ein elektrisches Feld aufgebaut wird und eine Gasentladung brennt. Die elektrischen Anschlüsse werden durch einen
Quetschfuß gasdicht nach außen geführt.
Die Elektroden können kalt oder glühend sein.
Alle Gasentladungslampen außer Blitzlampen benötigen zum Betrieb eine Strombegrenzung, da ansonsten die Ladungsträgerdichte und der Strom aufgrund der Stoßionisation schnell ansteigen, was bei Überspannungsableitern und Nulloden gewünscht ist, bei Lampen jedoch zu deren Zerstörung führt (siehe Kennlinie oben). Die Strombegrenzung wird durch einen Widerstand (Glimmlampen), eine Drossel oder ein elektronisches Vorschaltgerät (EVG, engl. ballast) erreicht.
Blitzlampen arbeiten dagegen oft ohne Strombegrenzung aus einem Speicherkondensator. Sie sind meistens mit Xenon (zum Pumpen von Festkörperlasern auch mit Krypton) gefüllt und erzeugen innerhalb etwa 0,1 bis 5 Millisekunden sehr hohe Lichtleistungen tageslichtähnlicher Qualität; siehe hierzu auch Blitzlicht, Blitzröhre, Blitzlampe.
Eine Art von Gasentladungslampen ist auch die Schwefellampe. Sie ist elektrodenlos, das Plasma wird durch Mikrowellenstrahlung erzeugt.
Neuerdings gibt es auch elektrodenlose Energiesparlampen; diese arbeiten mit Hochfrequenz.
Niederdruckentladungslampen
Besonderheiten
Hell- und Dunkelräume einer Niederdruck-Gasentladung mit kalten Kathoden. Unten: Spannungsverteilung
Die Niederdruckentladungslampe zeichnet sich dadurch aus, dass die Elektronen- und Gastemperatur kaum gekoppelt sind. Es herrscht kein thermisches Gleichgewicht. Die Entladungsform wird auch als Glimmentladung bezeichnet. Eine typische Anwendung ist die Leuchtstofflampe, die eine Sonderform der Quecksilberdampflampe darstellt.
In einem teilevakuierten Glasrohr bildet sich an gegenüberliegenden Elektroden bei ausreichend hoher Spannung (Brennspannung etwa einhundert bis mehrere 100 V) eine Glimmentladung aus. In der Nähe der Kathode (−) tritt das negative Glimmlicht auf, in der Mitte bis zur Anode (+) die sogenannte positive Säule.
Niederdrucklampen arbeiten
oder
Beispiele
Glimmlampen
Schaltzeichen einer Glimmlampe
Die Abbildungen zeigen verschiedene Bauformen von Glimmlampen, die aufgrund ihrer Konstruktion nur das negative Glimmlicht für die Lichterzeugung nutzen. Das Gas bestimmt die Farbe der Glimmentladung, z. B. strahlt die positive Säule von Neon in intensivem Rot (siehe Lichtspektrum), das negative Glimmlicht hingehen Orange. Es leuchtet immer die Kathode.
Große Glimmlampen wurden z. B. im 2. Weltkrieg während bestehender Verdunkelungspflicht zu Beleuchtungszwecken in Gebäuden eingesetzt. Ihre Elektroden bestanden aus einer nach oben konisch zulaufenden Typ 1-Doppelhelix, die in einen gewöhnlichen, heute noch üblichen Allgebrauchslampen-Glaskolben mit E27-Sockel eingeschmolzen war. Im Sockel befand sich auch der Vorwiderstand. Der Form der Elektroden verdankt sie die Bezeichnung Bienenkorbglimmlampe. Ihre Leistung betrug zwischen 2 und 4 Watt einschl. Vorwiderstand. Sie wurden noch bis in die 1980er Jahre hergestellt und finden sich noch vereinzelt in schulischen Physiksammlungen.
Kleine Glimmlampen befinden sich in beleuchteten Tastern, Betriebsspannungsanzeigen und auch in Phasenprüfern. Früher gab es nach diesem Prinzip auch Ziffernanzeigeröhren (sog. Nixieröhren), Zählröhren und Abstimmanzeigen. Es wurden in den 1950er Jahren damit sogar (unter Ausnutzung des negativen differentiellen Widerstands bei Ionenleitung in Gasen) Kippschwinger, Logikgatter, Digitalspeicher, Zählschaltungen und Frequenzteiler entwickelt und z.B. in elektronischen Orgeln eingesetzt[1][2][3][4]. Aufgrund des Leitungsmechanismus wurde diese Technologie als Ionik bezeichnet.
Durch Glimmlampen in beleuchteten Tastern fließt je Glimmlampe ein elektrischer Strom von (0,4 … 1) Milliampere (mA), bei 230 Volt Netzspannung beträgt die Leistung (0,092 … 0,23) Watt. Das ergibt einen Energiebedarf von ca. 0,8 bis 2 kWh pro Jahr und Taster.
Vor dem Aufkommen der Halbleiter wurden Glimmlampen als Stabilisatoren von Spannungen im Bereich zwischen 100 und 300 V verwendet (siehe Stabilisatorröhre), sowie zum Aufbau von einfachen Kippschaltungen z. B. als Zündgenerator in Dekorations-Stroboskoplampen.
Ende der 1930er Jahre wurde auch mit Gleichrichtern auf Basis von Glimmentladungen experimentiert.[5]. Die Gleichrichterwirkung basiert auf einer unsymmetrischen Formung der beiden Entladungselektroden oder auch mit Elektrodenbeschichtungen zur Reduktion des Kathodenfalles. Der Glimmgleichrichter konnte sich in der Praxis allerdings wegen seines recht schlechten Verhältnisses von Durchlass- zu Sperrstrom (< 100:1) nicht durchsetzen; Der Einsatz von Kondensatoren zur Spannungsglättung erhöhte den Sperrstrom noch zusätzlich.
Auch Plasmabildschirme arbeiten mit Glimmentladungen.
Glimmlampe, Durchmesser etwa 10 mm. Die obere und untere Elektrode sind so geformt, dass sie, von oben betrachtet, eine leuchtende Scheibe bilden.
|
Glimmlampe, Durchmesser etwa 8 mm (sockellos). Elektroden stabförmig; an Wechselspannung leuchten sie abwechselnd pro Halbwelle, wie die zwei Momentaufnahmen zeigen; Spektrum: rote und gelbe Neon-Linien sowie die schwache grüne Linie bei 540 nm.
|
Unterschiedliche Glimmlampen. Betriebsspannung bis 230 V, oft mit Vorwiderstand im Sockel
|
Zu den Glimmlampen zählen auch die Nixie-Röhren, deren Kathoden in Form von Ziffern oder anderen Symbolen geformt sind. Sie werden mit Gleichspannung betrieben.
|
Edelgase in Form von Entladungsröhren, Betrieb mit 1,8kV, 18mA und 35kHz
|
In Leuchtröhren (Kaltkathodenröhren) und Neonröhren (dann mit rot emittierender Neonfüllung), liegen die Elektroden weit entfernt voneinander in einem Glasrohr. Hier leuchtet die positive Säule, wenn eine Spannung von mehreren 100 Volt anliegt. Andere Farben werden durch andere Füllungen und Leuchtstoffe erreicht. Leuchtröhren, Neonröhren und Kaltkathodenröhren haben kalte Kathoden und benötigen höhere Spannungen als Glimmlampen oder Leuchtstofflampen.
Schaltzeichen einer Leuchtstofflampe mit den vier Anschlüssen für die Glühkathoden
Manchmal werden auch Leuchtröhren als Leuchtstofflampen bezeichnet, denn sie enthalten oft ebenso wie Leuchtstofflampen einen Leuchtstoff. Leuchtstofflampen (auch Leuchtstoffröhren genannt) sowie Kompaktleuchtstofflampen und sogenannte Energiesparlampen haben jedoch Glühkathoden (direkt beheizte Oxidkathoden). Durch Glühemission sinkt die erforderliche Betriebsspannung auf Werte ab, die einen Betrieb über eine Vorschaltdrossel direkt an Netzspannung erlauben.
Siehe auch: Thermionische Entladung
Hochdruck-Entladungslampen (HID-Lampen)
Besonderheiten
Detail (Kathode) von Bild oben
Quecksilberdampf-Hochdrucklampe 80 Watt mit Leuchtstoff-beschichtetem Schutzglaskolben (Entladungsgefäß siehe oben bei
Aufbau). Zum Betrieb ist ein
Vorschaltgerät erforderlich
Die beiden Elektroden in dem Quarzglas- oder Keramik-Entladungsgefäß bestehen aus Wolfram (massiv oder Drahtwickel) und besitzen im neuen Zustand eine Spitze. Diese brennt während der Lebensdauer etwas zurück.
Die Stromdichte ist so hoch, dass die Niederdruck-Entladung beim Start sofort in eine Bogenentladung übergeht, sodass sich der Innendruck durch steigende Temperatur und verdampfende Füllbestandteile stark erhöht. Die Elektroden erreichen je nach Bauart Temperaturen von etwa 1000 bis mehrere 1000 °C und werden nicht vorgeheizt. Bei Quecksilberdampflampen befinden sich neben den Hauptelektroden noch Zündelektroden, sodass ein Zündgerät, wie es bei anderen Hochdruck-Gasentladungslampen erforderlich ist, entfallen kann.
Aufgrund der höheren Dichte und der daraus resultierenden kleineren freien Weglänge der Teilchen befinden sich bei der Hochdruckentladungslampe (p > 0,1 bar bzw. > 10000 Pa) Elektronen- und Gastemperatur annähernd im Gleichgewicht. Im Gegensatz zu Leuchtröhren sind die Spannungen niedrig (50…200 V) und die Entladungsströme (typisch 1…10 A) liegen deutlich höher.
Hochdruck-Gasentladungslampen werden auch HID-Lampen (von engl. high intensity discharge) genannt.
Bei Hochdruck-Gasentladungslampen tritt bereits eine Linienverbreiterung aufgrund der thermischen Bewegung auf, weshalb diese Lampen auch ohne Leuchtstoff bereits eine etwas bessere Farbwiedergabe besitzen als Niederdruck-Entladungslampen ohne Leuchtstoff.
Hochdruck-Gasentladungslampen haben oft einen zusätzlichen Schutzglaskolben, der auch der thermischen Isolierung dient und teilweise einen Leuchtstoff trägt.
Beispiele
Höchstdruck-Gasentladungslampen
Bei diesen Lampen hat das Füllgas, meist Xenon, ein Quecksilber-Edelgas-Gemisch, bereits bei Raumtemperatur Überdruck; im Betrieb steigt der Druck auf 10 bis 40 MPa an. Die Lampen haben ein gedrungenes, dickwandiges Quarzglasgefäß und massive Wolfram-Elektroden. Üblich sind Lampen mit einer Aufnahmeleistung von 50W bis 10 kW.
Diese Lampen werden als Projektionslichtquelle oder in Sonnenlicht-Simulatoren mit Xenonfüllung und zu Zwecken der Fotolithografie mit Quecksilberdampf-Füllung hergestellt.
Diese Lampen müssen vor ihrem kontinuierlichen Betrieb gezündet werden, da ja zwischen den beiden Elektroden eine nicht leitende Gasstrecke liegt. Dies geschieht, indem ein Hochspannungsimpuls (bis zu 50 kV) angelegt wird, die die Durchschlagspannung der Gasstrecke übersteigt. Der dadurch entstehende Überschlag ionisiert die Gasstrecke zwischen den Elektroden und macht sie leitend. Damit die ionisierte Strecke nicht sofort wieder abbricht, muss nun im kontinuierlichen Betrieb bei einer Spannung von 20V bis 30V ein geglätteter Gleichstrom zugeführt werden. Je besser die Betriebsspannung geglättet ist, desto höher ist die Lebensdauer der Lampe und desto höher ist die Qualität des abgegebenen Lichtes.
Höchstdruck-Gasentladungslampen haben ein Leuchtzentrum von nur wenigen Millimetern Ausdehnung, wobei der Punkt der höchsten Leuchtdichte (hot spot) direkt an der Elektrode liegt, an der die Elektronen austreten; sie werden daher auch als Kurzbogenlampen bezeichnet. Die geringe Größe der Lichtquelle und ihre hohe Intensität erlaubt eine effektive Fokussierung bzw. Kollimation u. a. bei Leuchttürmen, Scheinwerfern und in Projektoren.
Höchstdruck-Gasentladungslampen weisen eine starke thermische Linienverbreiterung ihres Emissionsspekrums auf und geben im Falle von Xenon-Höchstdrucklampen ein fast kontinuierliches, tageslichtähnliches Spektrum ab.
Höchstdrucklampen müssen aufgrund der Explosionsgefahr mit Vorsicht gehandhabt (Handschuhe, Schutzbrille) und betrieben (keine freie Montage möglich, Betriebslage oft vorgeschrieben) werden.
Anwendungen
Quecksilberdampflampe für PKW mit Xenon als Füllgas
Zur Straßen- und Industriebeleuchtung werden oft Natriumdampflampen eingesetzt. Natrium hat eine Doppellinie bei 589,0 und 589,6 nm (Natrium-D-Linie), die die dominierende gelb-orange Farbwiedergabe bewirken. Das untere Niveau dieser Linien ist der Grundzustand, so dass die Strahlungsdichte dieser Resonanzlinien sehr hoch ist.
In Flutlichtanlagen werden Hochdruck-Gasentladungslampen mit Quecksilber-, Metall-Halogenid- oder Natriumdampffüllung eingesetzt. Die beste Farbwiedergabe haben Xenonlampen. Eine relativ gute Farbwiedergabe haben Metall-Halogenid-Gasentladungslampen (auch Halogen-Metalldampflampen, nicht Halogen-Glühlampen!), die auch Quecksilberdampf enthalten. Sie werden oft in Geschäftsauslagen eingesetzt.
Bei Kino- und Videoprojektoren werden Xenon-Gasentladungslampen im Leistungsbereich von 100 W bis 15 kW eingesetzt.
Bei Kraftfahrzeugen wird seit 1991 sog. Xenonlicht in den Scheinwerfern verwendet. Hierbei handelt es sich um Quecksilberdampflampen mit Xenon als Füll- bzw. Startgas. Sie haben gegenüber Glühlampen bei geringerer Leistungsaufnahme einen höheren Lichtstrom (Halogenglühlampe H7 ca. 1500lm vs. HID-Lampe ca. 3000lm).
Literatur
- Günter Springer: Fachkunde Elektrotechnik. 18.Auflage, Verlag Europa-Lehrmittel, Wuppertal, 1989, ISBN 3-8085-3018-9
- Hans R. Ris: Beleuchtungstechnik für Praktiker. 2. Auflage, VDE-Verlag GmbH, Berlin-Offenbach, 1997, ISBN 3-8007-2163-5
- Wilhelm Gerster: Moderne Beleuchtungssysteme für drinnen und draussen. 1. Auflage, Compact Verlag, München, 1997, ISBN 3-8174-2395-0
- A. Senner: Fachkunde Elektrotechnik. 4.Auflage. Verlag Europa-Lehrmittel, 1965
Referenzen
- ↑ A.A. Vuylsteke, "Neon lamp flip-flop and binary counter," Electronics, vol. 26, page 248 (April 1953).
- ↑ M.S. Raphael and A.S. Robinson, "Digital storage using neon tubes," Electronics, vol. 29, pages 162-165 (July 1956).
- ↑ J.C. Manley and E.F. Buckley, "Neon diode ring counter," Electronics, vol. 23, pages 84-87 (January 1950).
- ↑ C.E. Hendrix and R.B. Purcell, "Neon lamp logic gates play tic-tac-toe," Electronics, vol. 31, pages 68-69 (20 June 1958).
- ↑ Nentwig, Geffcken, Richter: Die Glimmröhre in der Technik, 1939, Deutsch-Literarisches Institut J. Schneider, Berlin-Tempelhof, S. 110ff
Siehe auch
Weblinks
Wikimedia Foundation.