- Archimedes (Raumsonde)
-
Archimedes ist eine Ballonsonde, die zur Erforschung der Marsatmosphäre eingesetzt werden soll. Es handelt sich um einen mit Helium gefüllten, kugelförmigen Überdruckballon mit etwa zehn Metern Durchmesser, den die Mars Society Deutschland für den von der AMSAT-Deutschland geplanten Mars-Satelliten AMSAT P5A als Nutzlast konzipiert hat.
Inhaltsverzeichnis
Konzept
Das Besondere an Archimedes ist, dass zur Untersuchung der Hochatmosphäre der Ballon bereits im Weltraum aufgeblasen wird, und beim folgenden Eintritt in die Marsatmosphäre als Hyperschall-Bremskörper wirkt, um anschließend die Atmosphäre auf einer niedrigeren Umlaufbahn wieder zu verlassen. Nach mehreren solcher Atmosphären-Durchflüge wird er in der Atmosphäre verbleiben und langsam zum Boden sinken. Dabei werden Messinstrumente kontinuierlich über den gesamten Verlauf des Abstiegs Messdaten der Atmosphäre aufnehmen.
Die Sonde ist nach dem altgriechischen Naturwissenschaftler Archimedes von Syrakus benannt, der unter anderem das Schwimmprinzip entdeckt und die Gesetze der Hydro- und Aerostatik erkannt hat. Gleichzeitig stellt der Name die Abkürzung für eine zusammenfassende Beschreibung der Mission und ihrer Instrumente dar: Aerial Robot, Carrying High resolution Imaging, a Magnetometer Experiment and Direct Environment Sensors.
Entwicklung
Neben der Mars Society Deutschland e.V., der AMSAT Deutschland e.V. und verschiedenen Instituten ist besonders die Universität der Bundeswehr München an diesem neuartigen Raumsonden-Projekt beteiligt. Die Projektleitung liegt beim dortigen Institut für Raumfahrttechnik, außerdem sind die Institute für Leichtbau, Thermodynamik, Werkstoffkunde und für Photogrammetrie und Kartographie beteiligt. Maßgebliche Unterstützung erfährt das Projekt von der Firma IABG in Ottobrunn, die ihr Raumfahrttestzentrum für Versuche im Rahmen von Archimedes kostenlos zur Verfügung stellt, der Firma Lohmann Tapes Neuwied, welche eigens zur Herstellung des Ballons ein hochtemperaturbeständiges Klebeband entwickelt hat, sowie durch Sachspenden und Dienstleistungen zahlreicher weiterer Unternehmen. Als Projekt der Mars Society Deutschland e.V. ist es auch für eine möglichst breite Beteiligung von Studenten und Einzelpersonen angelegt.
Die bisherigen Untersuchungen zu Archimedes belegen die grundsätzliche Realisierbarkeit dieses Konzepts. Es erscheint wissenschaftlich so interessant, dass bereits untersucht wird, ob es auch im Rahmen einer Venus-Mission (Archimedes-V) eingesetzt werden könnte.
Der Start des AMSAT-P5-A ist derzeit für 2018 vorgesehen, die Archimedes-Mission in der Marsatmosphäre wird dann voraussichtlich Ende 2019 oder Anfang 2020 stattfinden.
Hintergrund
Forschungsballone werden auf der Erde seit langer Zeit in den verschiedensten wissenschaftlichen Bereichen eingesetzt. Aber auch auf anderen Planeten erscheint ihre Verwendung sinnvoll und möglich. Da ein Ballon während eines längeren Zeitraums alle Bereiche der Atmosphäre durchfahren kann, ermöglicht er dort direkte Messungen von Druck, Dichte und Atmosphärenströmungen von der Ionosphäre bis zum Boden, sowie Bilder aus Perspektiven, die aus der Umlaufbahn oder von einer gelandeten Sonde aus nicht möglich sind. Durch die Verfolgung der Bahn, die der Ballon, nur vom Wind und den Temperaturverhältnissen gesteuert, nimmt, sind zusätzliche Rückschlüsse und wissenschaftliche Erkenntnisse möglich.
Während auf der Venus bereits im Jahr 1985 im Rahmen der sowjetischen VEGA-Missionen französische Ballons erfolgreich zum Einsatz kamen, scheiterten bisher alle Konzepte für einen Mars-Ballon an der wesentlich dünneren Atmosphäre des Planeten, die dem Ballonkörper nur sehr geringen Auftrieb bietet. Diese Atmosphäre erfordert einen relativ großen Ballon mit möglichst geringem Eigengewicht, um eine geeignete Nutzlast tragen zu können. Bei einer solchen Konstruktion sind wegen der dünnen Ballonhaut bei großer Fläche vor allem das Ballonmaterial sowie der Aufblasvorgang, der unter Weltraumbedingungen und ohne jedes menschliche Eingreifen erfolgen muss, eine technische Herausforderung. Verschiedene Untersuchungen und Experimente in der frühen Phase des Projekts hatten klar ergeben, dass das Aufblasen des Ballons sowohl während des Landeanflugs durch die Atmosphäre als auch von einem Landemodul auf der Marsoberfläche aus mit den vorhandenen Mitteln kaum realisierbar ist, und ferner nicht die Möglichkeit bietet, Messdaten in größeren Höhen aufzunehmen.
Daher wurde für Archimedes ein völlig neuartiges Konzept gewählt. Hierbei wird der Ballon bereits im Weltraum aufgeblasen und dient beim Eintritt in die Atmosphäre selbst als Widerstandskörper.
Aufbau
Die Instrumente sind am „Südpol“ des Ballons in einem Instrumententräger untergebracht und mit einer „Nasenkappe“ so verkleidet, dass die Kugelform des Ballons erhalten bleibt. Die Verkleidung beherbergt spezielle Instrumente zur Untersuchung der Hochatmosphäre und des Strömungsfeldes bei den schnellen Atmosphärendurchflügen, und schützt gleichzeitig die Instrumente für tiefere Atmosphärenschichten vor der Aufheizung während der Hyperschallphase. Kurz vor Erreichen der Schallgeschwindigkeit wird sie abgeworfen und gibt die übrigen Sensoren frei. Fallschirme oder Bremsraketen sind nicht notwendig und während des Fluges müssen keine kritischen Manöver mehr durchgeführt werden. Damit können sowohl der Aufbau des Raumfahrzeugs als auch das Missionsprofil deutlich vereinfacht werden. Die große Fläche und das geringe Eigengewicht des Ballons sorgen bereits in Atmosphärenschichten mit sehr geringer Dichte für eine hohe Abbremsung. Weiterhin verteilt sich die dabei entstehende Wärme auf eine vergleichsweise große Oberfläche.
Missionsverlauf
Der in den AMSAT-Satelliten P5-A integrierte Ballon soll als Huckepack-Nutzlast zusammen mit kommerziellen Satelliten auf einer Ariane 5 gestartet werden und anschließend selbstständig Richtung Mars fliegen. Nachdem der Satellit am Mars angekommen ist und seinen endgültigen Orbit um den Planeten erreicht hat, wird Archimedes zusammen mit der Antriebseinheit des P5A, die auch die Heliumtanks und alle Vorrichtungen zum Aufblasen des Ballons enthält, abgetrennt und auf eine niedrigere Umlaufbahn abgebremst. P5A bleibt auf seiner höheren Bahn und dient als Relaisstation für die Datenübertragung zur Erde.
Sobald die geeigneten Voraussetzungen gegeben sind - gutes Wetter, gesicherte Funkverbindung zur Erde, Eintritt auf der Tagseite des Planeten - wird Archimedes noch weiter abgebremst, so dass der niedrigste Punkt der Umlaufbahn gerade innerhalb der Hochatmosphäre liegt. Noch vor Erreichen dieses Punktes wird der Ballon aufgeblasen und von der Antriebseinheit getrennt. Seine Bahn streift daraufhin die Marsatmosphäre, die ihn nach mehrmaligem Eintauchen schließlich so weit verlangsamt, dass er in der Atmosphäre verbleibt und zur Oberfläche absinkt. Ab dem Aufblasvorgang werden während der gesamten Mission wissenschaftliche Messungen durchgeführt und die Daten übertragen. Es wird damit gerechnet, dass der Ballon bereits in einer Höhe von etwa 50 bis 60 km die Schallgeschwindigkeit unterschreitet, so dass selbst die Wettersensoren über einen längeren Zeitraum zum Einsatz kommen und ein vollständiges Atmosphärenprofil über die Eintrittsbahn aufgezeichnet werden kann. Nach etwa 60 Minuten ist der Boden erreicht und die Mission beendet.
Instrumente
Die Instrumente werden von verschiedenen Instituten entwickelt. Der Instrumententräger von Archimedes enthält:
- Hochauflösende Kamera vom Institut für Planetenerkundung, DLR Berlin.
- Magnetometer zur Messung von Feldstärkeänderungen im Magnetfeld der Planetenkruste und zum Studium der Wechselwirkung des Planetenkörpers mit dem Magnetfeld des Sonnenwindes vom Institut für Geophysik und Extraterrestrische Physik der TU Braunschweig).
- „Wetterpaket“ AtmosB, bestehend aus einem Thermometer, einem Barometer und einem Hygrometer vom Finnischen Meteorologischen Institut Helsinki.
Diese Wetterinstrumente kommen zum Einsatz, sobald die Nasenkappe, die den Instrumententräger beim Eintritt in die Atmosphäre und bei Hyperschallgeschwindigkeit schützt, abgesprengt wird, während das Magnetometer und die Kamera bereits von Anfang an Daten erfassen können.
Damit im Weltraum und während des Eintritts noch zusätzliche Experimente durchgeführt werden können, wird auch die Nasenkappe selbst mit Instrumenten ausgestattet:
- AMS, Accelerometric Measurement System: Beschleunigungssensoren zur präzisen Messung der Abbremsung in der hohen Atmosphäre vom Institut für Computertechnik und theoretische Informatik der TU Iași sowie der Universität Pitești in Rumänien).
- COMPARE Experiment zur Messung des Staudrucks und der Aufheizung des Hyperschallverdichtungsstosses, vom Institut für Raumfahrtsysteme der Universität Stuttgart.
Das Radio Ranging, mit dem die Flugbahn des Ballons verfolgt und ausgewertet wird, wird von der AMSAT Deutschland durchgeführt.
Stand der Ballonversuche
Folgende Flugversuche wurden bisher durchgeführt bzw. sind geplant:
- Auf einer Parabelflugkampagne der ESA wurde im Jahr 2005 ein maßstabsgerechtes Modell des Auswurfmechanismus und des Ballons in der Schwerelosigkeit erfolgreich getestet
- Beim Flugversuch REGINA (REsidual Gas INflation test für Archimedes) wurde 2006 ein Modell des Entfaltungssystems auf der Höhenforschungsrakete REXUS-3 von der Esrange in Kiruna, Schweden, in 90 km Höhe gebracht und unter Weltraumbedingungen getestet.
- Im Oktober 2008 wurde ebenfalls in Kiruna der Flugversuch MIRIAM (Main Inflated Reentry Into the Atmosphere Mission Test) durchgeführt, bei dem der komplette Funktionszyklus des Systems vom Aufblasen des Ballons bis zum Eintritt in die Atmosphäre einschließlich der Datenübertragung getestet wurde. Dazu wurde mit einer REXUS-4-Rakete ein Ballon mit 4 m Durchmesser auf 140 km Höhe gebracht.
Allerdings wurde aufgrund einer Fehlfunktion im Trennmechanismus von MIRIAM die Ballon-Aufblaseinheit zu spät abgetrennt und der Aufblasvorgang bei noch gepacktem Ballon gestartet, bis der Überdruck schließlich den Aufblas-Schlauch vom System trennte. Als sich das Flugsystem schließlich von der Rakete löste wurde der Ballon sofort freigesetzt und die Entfaltung erfolgte unkontrolliert und mit nur ca. 10% der vorgesehenen Gasmenge. Bordelektronik, Software und Datenübertragung funktionierten wie vorgesehen. Obwohl damit die vollständige Ballonentfaltung und der anschließende Eintritt in die Atmosphäre nicht wie geplant zustande kamen, wurde durch die empfangenen Daten die grundsätzliche Funktionsfähigkeit des Entwurfs belegt.
2012 soll ein weiterer Flugtest mit analogem Missionsprofil (MIRIAM II) stattfinden.
Quellen
- Mars-Society Deutschland: Das Archimedes-Projekt
- Uni der BW: Projekt Archimedes
- Griebel, Hannes: Archimedes schwebt auf den Mars. In: Sterne und Weltraum. 2007, H. 4, S. 36-42.
- Griebel, Hannes: Projekt Archimedes: mit dem Ballon auf den Mars. In: Space 2009. München: Verein zur Förderung der Raumfahrt e.V., 2008. S. 68-77.
Kategorie:- Marssonde
Wikimedia Foundation.