Semiprimzahl

Semiprimzahl

Eine n-Fastprimzahl oder auch Primzahl n-ter Ordnung ist eine natürliche Zahl, deren Primfaktorzerlegung aus genau n (\in \Bbb N) Primzahlen besteht, wobei mehrfache Primteiler entsprechend oft gezählt werden. Insbesondere sind n-Fastprimzahlen für n\geq 2 keine Primzahlen. Der Norweger Viggo Brun führte den Begriff um 1915 zur Verallgemeinerung von Primzahlen ein, um einen neuen Ansatz für ungelöste Primzahlprobleme zu finden.[1]

Dieses Konzept kann problemlos auf die ganzen Zahlen und beliebige ZPE-Ringe verallgemeinert werden.

Inhaltsverzeichnis

Definition

Sei z \in \Bbb N \setminus \{0\} und z = \prod_{i=1}^k{p_i}^{e_i} mit Primzahlen {p_1}, \ldots, {p_k}. Dann heißt z Primzahl n-ter Ordnung, wobei n=\sum_{i=1}^{k}{e_i} gilt. Die Zahlenfolge für ein festes n wird auch mit Pn bezeichnet[2]. Die Wohldefiniertheit folgt aus der Eindeutigkeit der Primfaktorzerlegung für alle natürlichen Zahlen.

Eigenschaften

  • Jede Primzahl ist eine Primzahl der Ordnung 1, jede zusammengesetzte Zahl ist eine Primzahl der Ordnung 2 oder höher. Primzahlen der Ordnung 3 nennt man auch sphenische Zahlen.
  • Die Vereinigung der Pn bilden eine Zerlegung der natürlichen Zahlen.
  • Jede Primzahl n-ter Ordnung lässt sich als Produkt von Primzahlen der Ordnungen k1,...,km schreiben mit \sum_{i=1}^{m}{k_i}=n. Für k1,...,km > 0 gibt es S(n,m) solcher möglichen Zerlegungen, wobei S(n,m) die Stirling-Zahlen zweiter Art bezeichnet. Insbesondere ist eine Primzahl zweiter Ordnung das Produkt zweier Primzahlen, was vor allem in der Kryptographie Anwendung findet.

Null und eins

Für die 0 gibt es keine mögliche Primfaktorzerlegung, sie ist keine Primzahl n-ter Ordnung.

Für die 1 bzw. -1 gibt es ebenfalls keine eindeutige Primfaktorzerlegung, da es Einheiten sind. Ihnen wird oft das leere Produkt zugewiesen, entsprechend können sie definitionskonform als Primzahl 0-ter Ordnung bezeichnet werden.

Beispiele

  • 91 = 7 \cdot 13 ist eine Primzahl zweiter Ordnung.
  • 324 = 2^2 \cdot 3^4 ist eine Primzahl sechster Ordnung.
  • -172 = -(2^2 \cdot 43) ist eine Primzahl dritter Ordnung.

Anwendungen

Die beiden folgenden Sätze wurden in der 1970er Jahren bewiesen:

  • Jede genügend große, natürliche, gerade Zahl lässt sich als die Summe einer Primzahl erster und einer Primzahl zweiter Ordnung darstellen. Diese Aussage ist vergleichbar mit der goldbachschen Vermutung.
  • Es gibt unendlich viele Primzahlen, die einen Abstand von 2 zu einer 2-Fastprimzahl haben. Dies ist vergleichbar mit der Vermutung über Primzahlzwillinge.

Einzelnachweise

  1. Wolfgang Blum: Goldbach und die Zwillinge. In: Spektrum der Wissenschaft. Nr. 12/2008, Spektrum, Heidelberg Dezember 2008, S. 97. 
  2. Paulo Ribenboim: Die Welt der Primzahlen: Geheimnisse und Rekorde. Springer-Verlag 2006, Seite 219, ISBN 978-3540342830

Literatur

  • Władysław Narkiewicz: The Development of Prime Number Theory. Springer-Verlag, Berlin, 2000, ISBN 3-540-66289-8.
  • Hans Riesel: Prime Numbers and Computer Methods for Factorization. Birkhäuser Verlag, 1987, ISBN 3-764-33291-3.
  • David M. Bressoud: Factorization and Primality Testing. Springer-Verlag, Berlin, 1989, ISBN 0-387-97040-1.
  • Paulo Ribenboim: Die Welt der Primzahlen: Geheimnisse und Rekorde. Springer-Verlag, 2006, ISBN 978-3540342830.

Weblinks


Wikimedia Foundation.

Игры ⚽ Поможем решить контрольную работу

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Jingrun — Chen Jingrun (chin. 陳景潤 / 陈景润, Chén Jǐngrùn, W. G. Ch en Chingjun, (* 22. Mai 1933; † 19. März 1996) war ein chinesischer Mathematiker, der für seine Ergebnisse in der analytischen Zahlentheorie bekannt ist. Er gilt als einer der führenden… …   Deutsch Wikipedia

  • Faktorisierungsproblem — Das Faktorisierungsproblem für ganze Zahlen ist eine Aufgabenstellung aus dem mathematischen Teilgebiet der Zahlentheorie. Dabei soll zu einer zusammengesetzten Zahl ein nichttrivialer Teiler ermittelt werden. Ist beispielsweise die Zahl 91… …   Deutsch Wikipedia

  • Faktorisierungsproblem für ganze Zahlen — Das Faktorisierungsproblem für ganze Zahlen ist eine Aufgabenstellung aus dem mathematischen Teilgebiet der Zahlentheorie. Dabei soll zu einer zusammengesetzten Zahl ein nichttrivialer Teiler ermittelt werden. Ist beispielsweise die Zahl 91… …   Deutsch Wikipedia

  • Geschichte der Faktorisierungsverfahren — Das Faktorisierungsproblem für ganze Zahlen ist eine Aufgabenstellung aus dem mathematischen Teilgebiet der Zahlentheorie. Dabei soll zu einer zusammengesetzten Zahl ein nichttrivialer Teiler ermittelt werden. Ist beispielsweise die Zahl 91… …   Deutsch Wikipedia

  • RSA-129 — ist eine große Semiprimzahl aus dem Bereich Zahlentheorie der Mathematik. Die 129 Dezimalziffern lange Zahl ist Teil der RSA Factoring Challenge und wurde am 2. April 1994 mit dem Quadratischen Sieb faktorisiert. Die Faktorisierung von RSA 129… …   Deutsch Wikipedia

  • RSA-576 — Das RSA Factoring Challenge war ein am 18. März 1991 von der Firma RSA Security ausgerufener Wettbewerb, welcher die Sicherheit des RSA Kryptosystems aufzeigen sollte. Insbesondere Mathematiker und Informatiker wurden aufgefordert die… …   Deutsch Wikipedia

  • RSA-640 — Das RSA Factoring Challenge war ein am 18. März 1991 von der Firma RSA Security ausgerufener Wettbewerb, welcher die Sicherheit des RSA Kryptosystems aufzeigen sollte. Insbesondere Mathematiker und Informatiker wurden aufgefordert die… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”