Separabler Abschluss

Separabler Abschluss

Separabler Abschluss ist ein Begriff aus der Algebra.

Ist L / K eine separable algebraische Körpererweiterung, dann sind folgende Aussagen äquivalent:

  • Jedes nicht-konstante separable Polynom in L[X] zerfällt vollständig in Linearfaktoren.
  • Ist C ein algebraischer Abschluss von K und ist L eingebettet in C, dann ist die Erweiterung C / L rein inseparabel.

Zu jedem Körper K gibt es einen bis auf Isomorphie eindeutig bestimmten Körper L mit den obigen Eigenschaften. Er wird auch mit Ksep bezeichnet und heißt separabler algebraischer Abschluss von K.


Wikimedia Foundation.

Игры ⚽ Поможем написать реферат

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Artin-Schreier-Theorie — Die Artin Schreier Theorie gehört in der Mathematik zur Körpertheorie. Für Körper positiver Charakteristik p beschreibt sie abelsche Galois Erweiterungen vom Exponenten p und ergänzt damit die Kummer Theorie. Sie ist benannt nach Emil Artin und… …   Deutsch Wikipedia

  • Verzweigte Körpererweiterung — Verzweigung ist ein mathematischer Begriff, der die Gebiete Algebra, algebraische Geometrie und komplexe Analysis miteinander verbindet. Inhaltsverzeichnis 1 Namengebendes Beispiel 2 Verzweigung im Kontext von Erweiterungen bewerteter Körper 2.1… …   Deutsch Wikipedia

  • Verzweigungspunkt — Verzweigung ist ein mathematischer Begriff, der die Gebiete Algebra, algebraische Geometrie und komplexe Analysis miteinander verbindet. Inhaltsverzeichnis 1 Namengebendes Beispiel 2 Verzweigung im Kontext von Erweiterungen bewerteter Körper 2.1… …   Deutsch Wikipedia

  • Galois-Kohomologie — Unter Galoiskohomologie versteht man im mathematischen Teilgebiet der Zahlentheorie das Studium der Gruppenkohomologie von Galoisgruppen. Ist L|K eine Körpererweiterung und A ein Galoismodul, also ein Modul unter der Galoisgruppe Gal(L|K), so… …   Deutsch Wikipedia

  • Galoiskohomologie — Unter Galoiskohomologie versteht man im mathematischen Teilgebiet der Zahlentheorie das Studium der Gruppenkohomologie von Galoisgruppen. Ist L|K eine Körpererweiterung und A ein Galoismodul, also ein Modul unter der Galoisgruppe Gal(L|K), so… …   Deutsch Wikipedia

  • Krulltopologie — Die Krulltopologie, nach Wolfgang Krull, ist eine Topologie auf der Galoisgruppe einer nicht notwendigerweise endlichen Körpererweiterung L / K, so dass diese zu einer so genannten topologischen Gruppe wird. Inhaltsverzeichnis 1 Definition für… …   Deutsch Wikipedia

  • GCR-Algebra — Postliminale C* Algebren sind eine in der Mathematik betrachtete Klasse von C* Algebren. Alternative Bezeichnungen, die weiter unten motiviert werden, sind GCR Algebra oder Typ I C* Algebra. Es handelt sich um eine Verallgemeinerung der Klasse… …   Deutsch Wikipedia

  • Postliminale C*-Algebra — Postliminale C* Algebren sind eine in der Mathematik betrachtete Klasse von C* Algebren. Alternative Bezeichnungen, die weiter unten motiviert werden, sind GCR Algebra oder Typ I C* Algebra. Es handelt sich um eine Verallgemeinerung der Klasse… …   Deutsch Wikipedia

  • Toeplitz-Algebra — Postliminale C* Algebren sind eine in der Mathematik betrachtete Klasse von C* Algebren. Alternative Bezeichnungen, die weiter unten motiviert werden, sind GCR Algebra oder Typ I C* Algebra. Es handelt sich um eine Verallgemeinerung der Klasse… …   Deutsch Wikipedia

  • Typ-I-C*-Algebra — Postliminale C* Algebren sind eine in der Mathematik betrachtete Klasse von C* Algebren. Alternative Bezeichnungen, die weiter unten motiviert werden, sind GCR Algebra oder Typ I C* Algebra. Es handelt sich um eine Verallgemeinerung der Klasse… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”