- Borelsche σ-Algebra
-
Die borelsche σ-Algebra ist ein Begriff aus der Mathematik, der ein Scharnier zwischen den Zweigen Topologie und Maßtheorie bildet. Jedem topologischen Raum lässt sich in eindeutiger Weise eine σ-Algebra zuordnen, die man die zugehörige borelsche σ-Algebra nennt.
Der Begriff ist nach dem Mathematiker Émile Borel benannt.
Inhaltsverzeichnis
Definition
Für einen gegebenen topologischen Raum Ω ist die borelsche σ-Algebra definiert als die kleinste σ-Algebra, die die offenen Mengen von Ω enthält. Die Elemente dieser σ-Algebra heißen Borelmengen.
Bemerkungen
- Eine σ-Algebra auf einer Grundmenge Ω ist eine Menge von Teilmengen, die die Grundmenge enthält und die bezüglich Komplementbildung und abzählbarer Vereinigung abgeschlossen ist. Eine Grundmenge zusammen mit einer auf ihr erklärten σ-Algebra heißt auch Messraum.
- Dass genau eine solche kleinste σ-Algebra existiert, wird im Absatz über den σ-Operator gezeigt. Sie ist nichts anderes als der Schnitt aller σ-Algebren, die alle offenen Teilmengen enthalten. Da der Schnitt von σ-Algebren über einer gemeinsamen Grundmenge immer wieder eine σ-Algebra über dieser Grundmenge ist und die Potenzmenge immer sowohl σ-Algebra ist als auch alle offenen Teilmengen einhält, ist die Existenz dieser kleinsten σ-Algebra garantiert.
- Eine borelsche σ-Algebra ermöglicht es somit, einen topologischen Raum in kanonischer Weise mit der zusätzlichen Struktur eines Messraums auszustatten. Im Hinblick auf diese Struktur heißt der Raum dann auch Borel-Raum.
- In der Literatur hat sich folgende von Felix Hausdorff eingeführte Bezeichnung für manche einfache Klassen von Borelmengen durchgesetzt:[1][2][3]
- - mit werden alle Vereinigungen von abzählbar vielen abgeschlossenen Mengen bezeichnet,
- - mit - alle Durchschnitte von abzählbar vielen offenen Mengen,
- - mit - alle Durchschnitte von abzählbar vielen -Mengen,
- - mit - alle Vereinigungen von abzählbar vielen -Mengen,
- - mit - alle Vereinigungen von abzählbar vielen -Mengen,
- - mit - alle Durchschnitte von abzählbar vielen -Mengen
- usw.
- Alle , , , , , ,...-Mengen sind Borelmengen. Dieses Schema ermöglicht aber nicht, alle Borelmengen zu beschreiben, weil die Vereinigung von allen diesen Klassen im Allgemeinen bezüglich der Axiome einer σ-Algebra noch nicht abgeschlossen ist.[4]
- In der deskriptiven Mengenlehre bezeichnet man die offenen Mengen auch als -Mengen, die -Mengen als -Mengen, die -Mengen als -Mengen, etc. Komplemente von -Mengen heißen -Mengen; so sind etwa die -Mengen genau die -Mengen.
- Die Klasse der Borelmengen ist eine Unterklasse der Klasse der suslinschen (oder auch „analytischen“) Mengen.[2]
Beispiele
Die borelsche σ-Algebra auf einem metrischen Raum
Gegeben sei ein separabler metrischer Raum (X,d). Die offenen Kugeln erzeugen als Basis eine Topologie, diese wird von der Metrik erzeugte Topologie genannt. Jede offene Menge ist aufgrund der Separabilität (welche im metrischen Fall zum zweiten Abzählbarkeitsaxiom äquivalent ist) als abzählbare Vereinigung von offenen Kugeln zu schreiben. Die kleinste σ-Algebra, die die offenen Kugeln enthält, enthält daher alle offenen Mengen und ist somit gleich der Borelschen σ-Algebra.
Auf den Spezialfall und d die Euklidische Metrik wird in den folgenden Abschnitten näher eingegangen.
Die borelsche σ-Algebra auf den reellen Zahlen
Die Menge der reellen Zahlen wird üblicherweise mit der Topologie ausgestattet, die durch die offenen Intervalle (a,b) mit rationalen Endpunkten aufgespannt wird. Obwohl man in Einzelfällen auch andere Topologien auf betrachtet, gilt diese als die kanonische Topologie auf , und die aus ihr abgeleitete borelsche σ-Algebra wird schlicht als die borelsche σ-Algebra auf bezeichnet. Sie enthält (aufgrund der Abgeschlossenheit einer σ-Algebra bezüglich der Komplementbildung) außer den offenen auch die abgeschlossenen Intervalle.
Die borelsche σ-Algebra von enthält nicht alle Teilmengen von . Es lässt sich sogar zeigen, dass die borelsche σ-Algebra von gleichmächtig zu ist, während die Menge aller Teilmengen von eine echt größere Mächtigkeit als besitzt.
In der Maßtheorie zeigt man, dass alle Borelmengen Lebesgue-messbar sind. Die umgekehrte Aussage gilt jedoch nicht; es gibt Lebesgue-messbare Mengen, die keine Borelmengen sind. Diese Mengen unterscheiden sich jedoch nur um eine Menge vom Lebesgue-Maß 0 von einer Borelmenge.
Die borelsche σ-Algebra auf endlichdimensionalen reellen Vektorräumen
Auf den endlichdimensionalen Vektorräumen wird die kanonische Topologie von den n-dimensionalen Quadern mit rationalen Koordinaten ai und bi aufgespannt. Sie ist gleichzeitig die n-fache Produkttopologie der kanonischen Topologie auf . Die von ihr erzeugte borelsche σ-Algebra heißt analog zum eindimensionalen Fall die borelsche σ-Algebra auf .
Auf diese Art ist auch elegant die borelsche σ-Algebra der komplexen Zahlen erklärt: Man nutzt einfach die Vektorraumisomorphie zwischen und .
Anwendung
Die Menge Ω zusammen mit der borelschen σ-Algebra ist ein Messraum und liegt den Borelmaßen als solcher zugrunde. Alle Elemente der borelschen σ-Algebra (die selbst Mengen sind) werden Borel-messbar genannt; nur diesen werden durch ein Borel-Maß Werte zugeordnet.
Einzelnachweise
- ↑ Koepke, P., Kanovei V., Deskriptive Mengenlehre in Hausdorffs Grundzügen der Mengenlehre, 2001, uni-bonn.de (pdf)
- ↑ a b Alexandroff P.S., Lehrbuch der Mengenlehre, Verlag Harri Deutsch, Frankfurt am Main, 1994, ISBN 3-8171-1365-X
- ↑ Natanson I.P., Theorie der Funktionen einer reellen Veränderlichen, Verlag Harri Deutsch, Frankfurt am Main, 1977, ISBN 3-87144-217-8 (auch in digitaler Form auf russisch bei INSTITUTE OF COMPUTATIONAL MODELLING SB RAS, Krasnojarsk)
- ↑ Bei z.B. ist es erst unter Zuhilfenahme von transfiniten Ordinalzahlen möglich, dieses System auf solche Weise fortzusetzen, dass alle Borelmengen von ihm erfasst werden (s. bairesche Klassen: Verbindung zu den borelschen Mengen). Es gibt aber auch topologische Räume, in denen bereits allein die - und -Mengen die ganze Klasse der Borelmengen ausschöpfen, wie z.B. in einem T1-Raum mit abzählbar vielen Punkten. Mehr zu diesem Thema kann in Hausdorffs Mengenlehre (1927) nachgelesen werden.
Literatur
- Sashi Mohan Srivastava: A course on Borels sets. Springer-Verlag, New York NY u. a. 1998, ISBN 0-387-98412-7 (Graduate Texts in Mathematics 180).
Wikimedia Foundation.