- Casimir-Operator
-
Der Casimir-Operator (auch Casimir-Invariante, benannt nach dem Physiker Hendrik Casimir) wird im mathematischen Teilgebiet der Algebra und der Differentialgeometrie untersucht. Er ist ein spezielles Element aus dem Zentrum der universellen einhüllenden Algebra einer Lie-Algebra. Ein typisches Beispiel ist der quadrierte Drehimpulsoperator, der eine Casimir-Invariante der dreidimensionalen Drehgruppe ist.
Definition
Angenommen,
ist eine n-dimensionale halbeinfache Lie-Algebra. Sei
irgendeine Basis von
und
sei die Dualbasis von
hinsichtlich einer festen invarianten Bilinearform auf
. Das quadratische Casimir Element Ω ist das durch die Formel
gegebene Element der universellen einhüllenden Algebra
. Obschon sich die Definition des Casimir Elements auf die direkte Wahl einer Basis in der Lie-Algebra bezieht, ist es einfach zu zeigen, dass das erzeugte Element Ω davon unabhängig ist. Darüber hinaus impliziert die Invarianz der Bilinearform, die in der Definition benutzt wurde, dass das Casimir Element mit allen Elementen der Lie-Algebra
kommutiert und daher im Zentrum der universellen einhüllenden Algebra
liegt.
Sei ρ eine beliebige Darstellung der Lie-Algebra
auf einem (gegebenenfalls unendlichdimensionalen) Vektorraum V. Dann ist die korrespondierende quadratische Casimir-Invariante ρ(Ω) der durch
gegebene lineare Operator auf V.
Anwendungen
Ein Sonderfall dieser Konstruktion spielt eine wichtige Rolle in der Differentialgeometrie beziehungsweise der globalen Analysis. Operiert eine zusammenhängende Lie-Gruppe G mit zugehöriger Lie-Algebra
auf einer differenzierbare Mannigfaltigkeit M, so werden die Elemente von
durch Differentialoperatoren erster Ordnung auf M beschrieben. Sei ρ die Darstellung auf dem Raum der glatten Funktionen auf M. In diesem Fall ist die durch obige Formel gegebene Casimir-Invariante der G-invariante Differentialoperator zweiter Ordnung auf M.
Man kann noch allgemeinere Casimir-Invarianten definieren; dies geschieht beispielsweise bei Untersuchungen von Pseudo-Differentialoperatoren in der Fredholm-Theorie.
Literatur
- James E. Humphreys: Introduction to Lie Algebras and Representation Theory, 2. überarbeitete Auflage, Graduate Texts in Mathematics, 9. Springer-Verlag, New York, 1978. ISBN 0-387-90053-5
Wikimedia Foundation.