Gitterebene

Gitterebene

Als Gitter- oder Netzebene bezeichnet man in der Kristallographie eine Ebene, die durch Punkte des Kristallgitters aufgespannt wird. Ihre Lage im Raum wird durch die Millerschen Indizes (hkl) beschrieben.

Beschreibung

Ein Kristallgitter lässt sich als ganzzahlige Linearkombination der Basisvektoren \vec{a}_1, \vec{a}_2 und \vec{a}_3 (Richtung der Kristallachsen) beschreiben. Eine Gitterebene ist durch ihre Schnittpunkte mit den Kristallachsen festgelegt. Die Millerschen Indizes (hkl) bezeichnen die Ebene, die durch die drei Punkte \tfrac{1}{h} \vec{a}_1, \tfrac{1}{k} \vec{a}_2 und \tfrac{1}{l} \vec{a}_3 geht. Also schneiden die Kristallachsen des jeweiligen Kristallsystems die Ebenen gerade an den Kehrwerten der einzelnen Indizes. Ein Index von Null bezeichnet dabei einen Schnittpunkt im Unendlichen, das heißt, der zugehörige Basisvektor ist parallel zur Ebene.

Der reziproke Gittervektor \vec{G}=h \vec{g}_1 + k \vec{g}_2 + l \vec{g}_3 steht senkrecht auf der durch die Millerschen Indizes (hkl) definierten Gitterebene. Die Vektoren \vec{g}_1, \vec{g}_2 und \vec{g}_3 bilden die Basisvektoren des reziproken Gitters.

Eine Gitterebenenschar besteht aus allen parallel verlaufenden Gitterebenen mit jeweils dem Gitterebenenabstand dhkl. Dieser kann aus den Millerschen Indizes und den reziproken Gittervektoren berechnet werden:

d_{\mathrm{hkl}}=\frac{2\pi}{|h\,\vec{g}_{1}+k\,\vec{g}_{2}+l\,\vec{g}_{3}|}

Für Kristallsysteme mit rechtwinkligen Achsen, also orthorhombische und höher symmetrische Gitter (tetragonale und kubische Systeme) gilt folgende Formel (a, b, c seien die Gitterkonstanten):

d_{\mathrm{hkl}}=\frac{1}{\sqrt{\left(\frac{h}{a}\right)^{2}+\left(\frac{k}{b}\right)^{2}+\left(\frac{l}{c}\right)^{2}}}

Diese vereinfacht sich beispielsweise für kubische Systeme durch Gleichsetzen von a = b = c weiter:

d_{\mathrm{hkl}}=\frac{a}{\sqrt{h^{2}+k^{2}+l^{2}}}

Herleitungen

Eine Ebene ist eindeutig durch drei nicht auf einer Gerade liegende Punkte definiert. Dies sind hier die Schnittpunkte mit den Kristallachsen: \vec{P}_{1}=\frac{1}{h} \vec{a}_1, \vec{P}_{2}=\frac{1}{k} \vec{a}_2 und \vec{P}_{3}=\frac{1}{l} \vec{a}_3.

Die Punkte auf der Ebene lassen sich durch die Parameterform \vec r = \vec r_0 + \lambda \vec u + \mu \vec v beschreiben (mit Aufpunkt und zwei Richtungsvektoren, die in der Ebene liegen und nicht kollinear sind). Liegen zwei Punkte in der Ebene, so liegt deren Verbindungsvektor ebenfalls in der Ebene. Hierüber lassen sich die Richtungsvektoren konstruieren (\vec u = \vec P_1-\vec P_2 und \vec v = \vec P_2-\vec P_3). Als Aufpunkt wähle irgendeinen in der Ebene liegenden Punkt (hier \vec P_1):

\vec{r}=\frac{1}{h}\vec{a}_1+\lambda \left(\frac{1}{h}\vec{a}_1 - \frac{1}{k}\vec{a}_2\right) + \mu \left(\frac{1}{k}\vec{a}_2 - \frac{1}{l}\vec{a}_3\right)

Bildet man das Skalarprodukt zwischen dem reziproken Gittervektor \vec{G}=h\vec{g}_1 + k\vec{g}_2 + l\vec{g}_3 und \vec{r} unter Ausnutzung der Relation \vec{g}_{i}\cdot\vec{a}_{j}=2\pi \delta_{ij}, so ergibt sich:

\vec{G}\cdot\vec{r}=\underbrace{\frac{1}{h}\underbrace{\vec{G}\cdot\vec{a}_{1}}_{2\pi\, h}}_{=2\pi}+\lambda\underbrace{\left(\frac{1}{h}\underbrace{\vec{G}\cdot\vec{a}_{1}}_{2\pi\, h}-\frac{1}{k}\underbrace{\vec{G}\cdot\vec{a}_{2}}_{2\pi\, k}\right)}_{=0}+\mu\underbrace{\left(\frac{1}{k}\underbrace{\vec{G}\cdot\vec{a}_{2}}_{2\pi\, k}-\frac{1}{l}\underbrace{\vec{G}\cdot\vec{a}_{3}}_{2\pi\, l}\right)}_{=0}=2\pi

Für einen Normalenvektor der Ebene \vec{n} sind die Skalarprodukte mit den Richtungsvektoren gleich Null (\vec{n}\cdot\vec{u}=0 und \vec{n}\cdot\vec{v}=0). Genau das trifft auf \vec{G}=h\vec{g}_1 + k\vec{g}_2 + l\vec{g}_3 zu, dieser steht also auf der Ebene (hkl) senkrecht.

Durch den Gitterpunkt am Koordinatenursprung verläuft parallel zur gerade betrachteten Ebene durch P1 auch eine Ebene mit den Indizes (hkl). Deren Abstand ist die Projektion eines Verbindungsvektors beider Ebenen (\vec{r}-\vec{0}=\vec{r}) auf den normierten Normalenvektor (\vec{G}/G). Dies ergibt zusammen mit obiger Rechnung den Gitterebenenabstand:

\frac{\vec{G}}{G}\cdot\vec{r}=\frac{2\pi}{|h \vec{g}_1 + k \vec{g}_2 + l \vec{g}_3|}\equiv d_{\mathrm{hkl}}

Im Nenner treten bei der Betragsbildung sowohl die Längen der reziproken Gittervektoren auf (\vec{g}_{i}^{\,2}=|\vec{g}_{i}|^{2}) als auch die Projektionen der Gittervektoren aufeinander (\vec{g}_{i}\cdot\vec{g}_{j} mit i\neq j). Letztere sind bei nicht-orthogonalen Kristallsystemen ungleich Null:

d_{\mathrm{hkl}}=\frac{2\pi}{|h\vec{g}_{1}+k\vec{g}_{2}+l\vec{g}_{3}|}=\frac{2\pi}{\sqrt{h^{2}\vec{g}_{1}^{\,2}+k^{2}\vec{g}_{2}^{\,2}+l^{2}\vec{g}_{3}^{\,2}+2hk\,\vec{g}_{1}\cdot\vec{g}_{2}+2hl\,\vec{g}_{1}\cdot\vec{g}_{3}+2kl\,\vec{g}_{2}\cdot\vec{g}_{3}}}

Ein orthorhombisches Kristallsystem ist ein rechtwinkliges Kristallsystem mit drei 90°-Winkeln, jedoch ohne gleichlange Achsen. Die Gittervektoren lauten hier ausgedrückt bzgl. der kanonischen Einheitsbasis:

\vec{a}_1=a\,\hat{e}_x
\vec{a}_2=b\,\hat{e}_y
\vec{a}_3=c\,\hat{e}_z

Und die dazugehörigen reziproken Gittervektoren sind ebenfalls orthogonal (\vec{g}_{i}\cdot\vec{g}_{j}=0 für i\neq j):

\vec{g}_1=\frac{2\pi}{a}\,\hat{e}_x
\vec{g}_2=\frac{2\pi}{b}\,\hat{e}_y
\vec{g}_3=\frac{2\pi}{c}\,\hat{e}_z

Setze diese in obige allgemeine Formel für den Gitterebenenabstand ein:

d_{\mathrm{hkl}}=\frac{2\pi}{\left|h\frac{2\pi}{a}\,\hat{e}_x + k\frac{2\pi}{b}\,\hat{e}_y + l\frac{2\pi}{c}\,\hat{e}_z\right|} = \frac{1}{\sqrt{\left(\frac{h}{a}\right)^{2}+\left(\frac{k}{b}\right)^{2}+\left(\frac{l}{c}\right)^{2}}}

Das kubische Kristallsystem ist ebenfalls rechtwinklig, aber zusätzlich sind die Gitterkonstanten bezüglich jeder Kristallachse gleich a = b = c und die Formel vereinfacht sich weiter zu:

d_{\mathrm{hkl}}=\frac{a}{\sqrt{h^{2}+k^{2}+l^{2}}}

Siehe auch


Wikimedia Foundation.

Игры ⚽ Поможем решить контрольную работу

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Gitterebene — Gitterebene,   Kristallographie: Netzebene …   Universal-Lexikon

  • Kristallebene — Auswahl millerscher Indizes in einem Würfel (Koordinatenurspung an der Ecke vorn links unten; x nach rechts, z nach oben, y Achse in die Bildebene) Millersche Indizes dienen in der Kristallographie der eindeutigen Bezeichnung von Ebenen und… …   Deutsch Wikipedia

  • Miller'scher Index — Auswahl millerscher Indizes in einem Würfel (Koordinatenurspung an der Ecke vorn links unten; x nach rechts, z nach oben, y Achse in die Bildebene) Millersche Indizes dienen in der Kristallographie der eindeutigen Bezeichnung von Ebenen und… …   Deutsch Wikipedia

  • Miller-Indizes — Auswahl millerscher Indizes in einem Würfel (Koordinatenurspung an der Ecke vorn links unten; x nach rechts, z nach oben, y Achse in die Bildebene) Millersche Indizes dienen in der Kristallographie der eindeutigen Bezeichnung von Ebenen und… …   Deutsch Wikipedia

  • Miller Index — Auswahl millerscher Indizes in einem Würfel (Koordinatenurspung an der Ecke vorn links unten; x nach rechts, z nach oben, y Achse in die Bildebene) Millersche Indizes dienen in der Kristallographie der eindeutigen Bezeichnung von Ebenen und… …   Deutsch Wikipedia

  • Millersche Indizes — Auswahl millerscher Indizes in einem Würfel Millersche Indizes dienen in der Kristallographie der eindeutigen Bezeichnung von Kristallflächen bzw. Ebenen im Kristallgitter. Die Schreibweise (hkl) wurde im Jahr 1839 von William Hallowes Miller… …   Deutsch Wikipedia

  • Millerscher Index — Auswahl millerscher Indizes in einem Würfel (Koordinatenurspung an der Ecke vorn links unten; x nach rechts, z nach oben, y Achse in die Bildebene) Millersche Indizes dienen in der Kristallographie der eindeutigen Bezeichnung von Ebenen und… …   Deutsch Wikipedia

  • Bragg-Bedingung — Die Bragg Gleichung, auch Bragg Bedingung genannt, wurde 1912 von William Lawrence Bragg entwickelt. Inhaltsverzeichnis 1 Prinzip 2 Physikalischer Hintergrund 3 Herleitung 4 Durchführung des Versuchs 5 Bedeu …   Deutsch Wikipedia

  • Bragg-Reflexion — Die Bragg Gleichung, auch Bragg Bedingung genannt, wurde 1912 von William Lawrence Bragg entwickelt. Inhaltsverzeichnis 1 Prinzip 2 Physikalischer Hintergrund 3 Herleitung 4 Durchführung des Versuchs 5 Bedeu …   Deutsch Wikipedia

  • Braggreflexion — Die Bragg Gleichung, auch Bragg Bedingung genannt, wurde 1912 von William Lawrence Bragg entwickelt. Inhaltsverzeichnis 1 Prinzip 2 Physikalischer Hintergrund 3 Herleitung 4 Durchführung des Versuchs 5 Bedeu …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”