- Alpha-Wellen
-
Die Elektroenzephalografie (EEG, von griechisch encephalon Gehirn, gráphein schreiben) ist eine Methode der medizinischen Diagnostik zur Messung der summierten elektrischen Aktivität des Gehirns durch Aufzeichnung der Spannungsschwankungen an der Kopfoberfläche. Das Elektroenzephalogramm (ebenfalls EEG abgekürzt) ist die graphische Darstellung dieser Schwankungen. Das EEG ist neben dem ENG und dem EMG eine standardmäßige Untersuchungsmethode in der Neurologie.
Ursache dieser Potenzialschwankungen sind physiologische Vorgänge einzelner Gehirnzellen, die durch ihre elektrischen Zustandsänderungen zur Informationsverarbeitung des Gehirns beitragen. Entsprechend ihrer spezifischen räumlichen Anordnung addieren sich die von einzelnen Neuronen erzeugten Potenziale auf, so dass sich über den gesamten Kopf verteilte Potenzialänderungen messen lassen.
Zur klinischen Bewertung wird eine Aufzeichnung in mindestens zwölf Kanälen von verschiedenen Elektrodenkombinationen benötigt.
Die Ortsauflösung des üblichen EEGs liegt bei mehreren Zentimetern. Wenn eine höhere Ortsauflösung benötigt wird, so müssen die Elektroden nach neurochirurgischer Eröffnung des Schädels direkt auf die zu untersuchende Hirnrinde aufgelegt werden. Das ist jedoch nur in Sonderfällen z. B. vor epilepsiechirurgischen Eingriffen erforderlich. In diesem Falle spricht man von einem Elektrocorticogramm (ECoG; in deutscher Schreibung Elektrokortikogramm). Das ECoG ermöglicht eine räumliche Auflösung von unter 1 cm und bietet zusätzlich die Möglichkeit, durch selektive elektrische Reizung einer der Elektroden die Funktion der darunterliegenden Hirnrinde zu testen. Dies kann für den Neurochirurgen z. B. bei Eingriffen in der Nähe der Sprachregion von größter Wichtigkeit sein, um zu entscheiden, welche Teile er entfernen darf ohne eine Funktionseinbuße fürchten zu müssen. Eine noch detailliertere Erfassung von Einzelzellaktivität ist nur im Tierexperiment möglich.
Die resultierenden Daten können von geübten Spezialisten auf auffällige Muster untersucht werden. Es gibt aber auch umfangreiche Software-Pakete zur automatischen Signalanalyse. Eine weitverbreitete Methode zur Analyse des EEGs ist die Fouriertransformation der Daten von der Zeitdomäne (also der gewohnten Darstellung von Spannungsänderungen im Verlauf der Zeit) in die sogenannte Frequenzdomäne. Die so gewonnene Darstellung erlaubt die schnelle Bestimmung von rhythmischer Aktivität.
Inhaltsverzeichnis
Geschichte
1924 entwickelte Hans Berger an der Universität Jena die Elektroenzephalographie des Menschen (1929 publiziert). Er entdeckte auch das Phänomen des Alpha-Blocks. Hierbei handelt es sich um eine sehr auffällige Veränderung des EEGs, die einsetzt, wenn ein gesunder Proband seine Augen öffnet oder zu erhöhter mentaler Aktivität angehalten wird.
Messverfahren
Da die zu messenden Signale in der Größenordnung von 5 bis 100 μV (1 Mikrovolt = 1 Millionstel Volt) liegen, wird ein empfindlicher Messverstärker benötigt. Zur Unterdrückung des allgegenwärtigen Netzbrummens und anderer Störungen wird ein Differenzverstärker mit hoher Gleichtaktunterdrückung benutzt. Aus Gründen der Patientensicherheit ist dieser bei als Medizingerät zugelassenen Elektroenzephalografen als Isolationsverstärker implementiert, wodurch gleichzeitig aber auch die Gleichtaktunterdrückung erhöht wird.
Die vor der Computerisierung benutzten Geräte leiteten den Ausgang der Differenzverstärker auf einen Messschreiber, das Elektroenzephalogramm wurde auf Endlospapier geschrieben. Die Papiermenge entsprach etwa 120 Blättern für eine Standarduntersuchung von 20 Minuten.
Die Elektroden für das EEG werden in einem bestimmten System angebracht, dem 10-20-System.
Beim papierlosen oder Computer-EEG wird das Signal digitalisiert und auf Festplatte oder optischen Medien festgehalten und das EEG vom Neurologen oder Psychiater meist am Bildschirm ausgewertet.
Verwandte und abgeleitete Methoden
Durch Mittelwertbildung von EEG-Abschnitten, die bestimmten Stimuli folgen, werden Evozierte Potenziale und Ereigniskorrelierte Potenziale abgeleitet. Hierbei ist teilweise eine größere Bandbreite und Empfindlichkeit der Verstärker nötig, insbesondere bei den Frühen Akustisch Evozierten Potenzialen.
Ein anderes Verfahren zur Messung von Hirnströmen, das ebenfalls eine vielfältige Anwendung in der Medizintechnik findet, ist die Indizierung der Gehirnströme anhand ihres Magnetfeldes, welches mithilfe der SQUID-Technologie vermessen wird (siehe auch: Magnetoenzephalographie).
EEG-Frequenzbänder
Die makroskopisch sichtbare elektrische Hirnaktivität kann Motive aufweisen, die rhythmischer Aktivität gleichen. Grundsätzlich gleicht das EEG jedoch dem 1/f-Rauschen und enthält keine lang andauernden Oszillationen.
Verschiedene Wachheitsgrade werden von Änderungen des Frequenz-Spektrums der EEG-Signale begleitet, so dass sich durch eine Analyse der gemessenen Spannungskurven vage Aussagen über den Bewusstseinszustand treffen lassen.
Häufig wird das EEG in Frequenzbänder (sogenannte EEG-Bänder) eingeteilt, wobei die Anzahl von Bändern wie auch die genaue Einteilung von verschiedenen Autoren verschieden angegeben wird. Die Einteilung der Frequenzbänder und deren Grenzen sind historisch bedingt und decken sich nicht durchgehend mit Grenzen, die auf Grund modernerer Untersuchungen als sinnvoll gelten. So wurde beispielsweise das Theta-Band in einen Bereich Theta 1 und Theta 2 aufgeteilt, um den unterschiedlichen Bedeutungen der Teilbereiche Rechnung zu tragen. Im Neurofeedback wird der Bereich 12 bis 15 Hz auch als SMR-Band (Sensorimotor Rhythm) bezeichnet.
EEG-Frequenzbänder und Graphoelemente
Die EEG-Auswertung erfolgt traditionell durch Mustererkennung des geschulten Auswerters. Insbesondere für Langzeit- und Schlaf-EEGs werden auch Software-Algorithmen zur assistierten oder automatischen Auswertung eingesetzt, die diese Mustererkennung nachbilden sollen. Dies gelingt einfacher für die hauptsächlich im Frequenzbereich definierten EEG-Bänder, etwas schwieriger für sonstige Graphoelemente, typische Muster im EEG.
So deutet z. B. ein sehr asynchrones Muster aller Frequenzbänder auf starke emotionale Belastung oder Verlust der willentlichen Kontrolle hin, während vermehrt langsame Wellen bei gleichzeitig wenigen schnellen Wellen auf einen Schlaf- oder einen Döszustand hinweisen.
Delta-Wellen
Delta-Wellen weisen eine niedrige Frequenz von 1 bis 4 Hz auf. Sie sind typisch für die traumlose Tiefschlafphase.
Theta-Wellen
Als Theta-Welle wird ein Signal im Frequenzbereich zwischen 4 und 7 Hz bezeichnet. Sie treten vermehrt in den leichten Schlafphasen auf und man reagiert nur noch auf wichtige oder starke Umweltreize.
Alpha-Wellen
Als Alpha-Welle wird ein Signal im Frequenzbereich zwischen 8 und 13 Hz bezeichnet. Ein verstärkter Anteil von Alpha-Wellen wird mit leichter Entspannung, bzw. entspannter Wachheit, bei geschlossenen Augen, assoziiert. Alpha-Wellen werden als emergente Eigenschaft betrachtet. Alpha-Wellen treten hauptsächlich bei geschlossenen Augen auf und gehen mit dem Öffnen der Augen sofort in den Beta-Bereich über. Den gleichen Effekt erreicht man bei geschlossenen Augen, wenn man z. B. eine einfache Rechenaufgabe im Kopf zu lösen beginnt.
Beta-Wellen
Beta-Wellen stellen einen bestimmten Ausschnitt aus dem Spektrum des Hirnwellenbildes dar, und nehmen einen Frequenzbereich zwischen 14 und 30 Hz ein. Das Auftreten von Betawellen hat verschiedene Ursachen und Bedeutungen, z. B. kommen Betawellen bei etwa 8 % aller Menschen als normale EEG-Variante vor. Betawellen entstehen aber auch als Folge der Einwirkung bestimmter Psychopharmaka oder kommen im REM-Schlaf vor. Physiologisch treten β-Oszillationen außerdem z. B. beim konstanten Halten einer Kraft auf.
Gamma-Wellen
Als Gamma-Welle wird ein Signal im Frequenzbereich über 30 Hz bezeichnet. Sie treten zum Beispiel bei starker Konzentration oder Lernprozessen auf. Neuere Forschungen zeigten die Bedeutung des Gammabandes bei der s. g. Top-Down Regulierung und der Synchronisation von verschiedenen Hirnarealen zur Integration verschiedener Qualitäten eines Stimulus. Sie sind auf einem EEG-Streifen mit bloßem Auge nicht zu sehen.
Sharp waves
Steile Wellen (Englisch "Sharp waves") bezeichnen, wie ihr Name sagt, steil ansteigende/abfallende EEG-Linien. Steile Wellen sind epilepsietypische Potentiale.
Sie dauern etwa 70-200 ms an, ragen aus der Grundaktivität hervor und sind von den kürzeren Spikes abzugrenzen.
Typisch sind EEG-Muster mit Sharp waves z. B. für die Rolando-Epilepsie mit zentro-temporalen Sharp waves, auch bei der Creutzfeldt-Jakob-Krankheit zeigt sich ein auffälliges EEG mit periodischen Sharp wave - Komplexen und beim Martin-Bell-Syndrom sind fokale Sharp waves nachweisbar. Sharp Waves gehören auch zu den Epilepsie-typischen-Potenzialen (ETPs).
Graphoelemente
Slow Cortical Potentials (SCP)
Slow Cortical Potentials (de: langsam veränderliche kortikale Potentialschwankungen) sind Potentialschwankungen in der Größenordnung von 100 - 200 μV und einer zeitlichen Dauer von 1 bis wenige Sekunden. Diese sind damit um ein vielfaches größer als die EEG-Wellen Delta bis Gamma, sind aber in einem herkömmlichen Elektroenzephalogramm nicht sichtbar, da sie mittels Hochpass-Filter üblicherweise herausgefiltert werden.
Schlafspindeln
Schlafspindeln sind für die NREM-Schlafphase 2 typische Wellenmuster. Die Ursache dieses Phänomens ist noch unbekannt.
K-Komplexe
K-Komplexe sind Wellenmuster, die typischerweise in der NREM-Schlafphase 2 auftreten. Es handelt sich dabei um eine einzelne große negative Welle, die unmittelbar von einer positiven Welle gefolgt wird.
Vertex-Wellen
Vertex-Wellen sind charakteristisch für den Wach-Schlaf-Übergang, treten aber auch im weiteren Schlafverlauf vor allem im stabilen Leichtschlaf auf. Sie haben eine Dauer von weniger als 200ms, sind weitgehend symmetrisch und zeigen eine scharfe negative Spitze. Ihr Maximum liegt über dem Vertex.
Anwendungen in der Medizin
Das Elektroenzephalogramm ist eine Standarduntersuchung der Neurologie.
Epilepsie
Das Elektroenzephalogramm dient zur Diagnose und Verlaufskontrolle der Epilepsie. Außer durch die hochamplitudige Aktivität während eines Anfalls, fallen besonders geformte Graphoelemente auch im anfallsfreien Intervall auf.
Hirntod
Das Erlöschen der Hirnströme (also ein Ausbleiben von Spannungsschwankungen im EEG) ist ein Hilfskriterium bei der Bestimmung des Hirntods.
Koma- und Narkosetiefe
Anhand spezifischer Kriterien, welche sich auf Graphoelemente und Frequenzmodulation des EEG beziehen, können Koma- und Narkosetiefe bestimmt werden.
Schlafmedizin
In der Schlafmedizin wird (häufig mit einem reduzierten Elektrodensatz) ein Ganznacht-EEG abgeleitet. Aus diesem lassen sich Informationen über die Einschlaflatenz, die Verteilung der Schlafstadien (dargestellt als Hypnogramm), Weckreaktionen (spontan oder infolge äußerer bzw. innerer Störquellen wie z. B. Lärm oder schlafbezogene Atmungsstörungen) und weitere physiologische und pathologische Prozesse im Schlaf gewinnen. Meist wird das EEG im Rahmen der Polysomnographie mit der Messung weiterer physiologischer Parameter kombiniert. Beim EEG, welches zur Schlafstadienanalyse im Schlaflabor verwendet wird, werden - im Vergleich zum kompletten EEG des 10-20-Systems - meist nur einige wenige Ableitungen vollzogen. Standardmäßig, nach Rechtschaffen und Kales, werden die Kanäle C3 / A2, C4 / A1 abgeleitet.
Anwendungen außerhalb der medizinischen Diagnostik
Beeinflussung der Gehirnwellen
Gehirnwellen lassen sich nicht nur messen, sondern auch beeinflussen: Das kann durch einen visuellen oder akustischen Reiz geschehen, durch Neurofeedback, eine Spezialform des Biofeedbacks oder durch direkte Manipulation der Gehirnwellen mittels elektrischer Wechselfelder (siehe auch: Transkranielle Magnetstimulation, TMS). Geräte, die das ermöglichen sollen, sind seit den 1980er Jahren unter dem Begriff Mindmachines oder Brainwave Stimulator erhältlich, zu sehr unterschiedlichen Preisen und mit sehr umstrittenem Erfolg.
Beim Neurofeedback ist es üblich, die EEG-Bänder feiner zu unterteilen und anders zu interpretieren als im klinischem EEG, siehe Tabelle. Eine erhöhte Amplitude innerhalb jener Frequenzbereiche wird mit gewissen mentalen Zuständen oder Aktivitäten korreliert. Die Spalte mögliche Effekte verweist auf behauptete Effekte, die sich durch gezielte Anregung der Hirnaktivität erzielen lassen oder auch spontan z. B. auch durch Reizüberflutung oder Reizdeprivation (Meditation) entstehen können. Die Existenz dieser Effekte ist wissenschaftlich nicht erwiesen und umstritten.
EEG-Frequenzbänder Frequenzband Frequenz Zustand Mögliche Effekte Delta 0,5 - 3,5 Hz Tiefschlaf, Trance Theta Niedrig (Theta 1) 4 - 6,5 Hz Hypnagogisches Bewusstsein (Einschlafen), Hypnose, Wachträumen Hoch (Theta 2) 6,5 - 7 Hz Tiefe Entspannung, Meditation, Hypnose, Wachträumen Erhöhte Erinnerungs- und Lernfähigkeit, Konzentration, Kreativität Alpha 8 - 13 Hz Leichte Entspannung, Super Learning (Unterbewusstes Lernen), nach innen gerichtete Aufmerksamkeit, geschlossene Augen Erhöhte Erinnerungs- und Lernfähigkeit Beta Niedrig (SMR) 14 - 15 Hz Entspannte nach außen gerichtete Aufmerksamkeit Gute Aufnahmefähigkeit und Aufmerksamkeit Mittel 15 - 21 Hz Hellwach, normale bis erhöhte nach außen gerichtete Aufmerksamkeit und Konzentration Gute Intelligenzleistung Hoch 21 - 38 Hz Hektik, Stress, Angst oder Überaktivierung Sprunghafte Gedankenführung Gamma 38 - 70 Hz Anspruchsvolle Tätigkeiten mit hohem Informationsfluss Transformation oder neuronale Reorganisation Steuerung durch Gehirnwellen
Neuere Forschungen unter dem Schlagwort Brain-Computer Interface (BCI) erzielen Fortschritte beim direkten Steuern von Computern durch kognitive Prozesse. Unter anderem Probanden des Fraunhofer-Instituts, des New York State Department of Health, der State University of New York in Albany sowie der Technische Universität Graz (Laboratory of Brain-Computer Interfaces) können mit Hilfe des EEGs einen Mauscursor nach einiger Übung präzise bewegen. Das ist ein gewaltiger Fortschritt, wenn man bedenkt, dass bisherige Studien mit Tieren und Menschen noch mit implantierten Drähten zur Messung der Hirnströme arbeiteten. Diese wurden als Fremdkörper behandelt und vom Körper abgestoßen. Die betreffenden Affen überlebten nur wenige Monate.
Seit Ende Mai 2008 bietet die Firma OCZ Technology ein BCI Tool für den Consumer-Markt an, den NIA (Neural Impulse Actuator).
Inzwischen hat das Brain-Computer Interface mittels EEG bereits Einzug in die medizinische Praxis gehalten und dient schwergelähmten Menschen zur Kommunikation mit der Außenwelt.
Inwieweit Steuerung via EEG in der Militärtechnologie zum Einsatz kommt, ist der Öffentlichkeit nicht unumschränkt zugänglich. Sicher ist, dass es seit Jahren Versuchsprojekte zur kurzzeitigen "körperlosen" Steuerung von Kampfjets bei extremen Beschleunigungs-Belastungen gibt. Der Trend hierbei geht jedoch eher zu einer rein maschinellen Steuerung, da unter den hohen G-Belastungen auch die Zuverlässigkeit des menschlichen Bewusstseins leidet.
Beispiele in Science Fiction, Phantastischer Literatur und Kunst
Im Thriller Firefox von Craig Thomas wird ein experimenteller Düsenjäger durch Gedanken gesteuert. Ein Helm wandelt die Signale des Gehirns in Steuerungsbefehle um. Auch taucht die Idee, Geräte durch Gedankenkraft zu steuern, in vielen Science-Fiction-Büchern auf.
Ein durch den Film Matrix aktuelles Beispiel ist auch die Idee, das Gehirn direkt mit einem Computer zu verbinden und so mit einer virtuellen Welt zu interagieren. Ursprünglich ist diese Idee von William Gibson.
Die Performance-Gruppe a rose is verwendet seit 2000 Echtzeit-Transformationen ihrer EEGs in Licht und Klang, die sie über ein akustisches Biofeedback aktiv kontrollieren können.
Bei Raumschiff Enterprise: Das nächste Jahrhundert wird häufiger über die Verwendung eines Deltawelleninduzierers gesprochen, um Personen das Einschlafen zu erleichtern.
Im Film Futureworld - Das Land von Übermorgen können Träume als Video aufgezeichnet werden, in dem die Gehirnströme des Schlafenden in Bildsignale umgewandelt werden.
Literatur
- Hans Berger: Über das Elektrenkephalogramm des Menschen in: Arch f Psychiatr 87: 527-570, 1929
- Cornelius Borck: Hirnströme: Eine Kulturgeschichte der Elektroenzephalographie, Göttingen 2005. ISBN 3-89244-893-0
- Mary Brazier: A history of the electrical activity of the brain; the first half-century, Macmillan, New York 1961.
- Pravdich-Neminsky VV.: Ein Versuch der Registrierung der elektrischen Gehirnerscheinungen, Zbl Physiol 27: 951–960, 1913.
- Stephan Zschocke: Klinische Elektroenzephalographie. Springer, Berlin 2002. (2. Aufl.)
- Dominik Zumsteg, Hansjörg Hungerbühler, Heinz-Gregor Wieser: Atlas of Adult Electroencephalography . Hippocampus-Verlag 2004. ISBN 3936817154
- Jan Seifert: Ereigniskorrelierte EEG-Aktivität. Lengerich: Pabst, 2005. ISBN 3-89967-236-4
Weblinks
- Netdoktor.de: Elektro-Enzephalographie
- Periodic sharp wave complexes, EEG
- Unterscheidung Sharp wave, Spike, Spike-and-slow wave
- Bauanleitung für ein Amateur-EEG (englisch)
- „Electroencephalogram“ in Scholarpedia (englisch, inkl. Literaturangaben)
Quellenangaben
Wikimedia Foundation.