Infrarotastronomie

Infrarotastronomie

Die Infrarotastronomie ist ein experimenteller Teilbereich der Astronomie, der die von astronomischen Objekten ausgesandte Infrarotstrahlung nutzt. Diese Strahlung liegt in einem Teil des elektromagnetischen Spektrums, der vom menschlichen Auge nicht wahrgenommen werden kann.

Whirlpool-Galaxie im infraroten Licht bei 2 μm

Inhaltsverzeichnis

Beobachtungsbereich

Der infrarote Strahlungsbereich, auch Wärmestrahlung genannt, liegt zwischen dem optischen (Wellenlänge < 700 nm) und dem Submillimeter-Bereich (> 300 μm) und wird in drei Bereiche unterteilt, das

  • Nahe Infrarot (ca. 700 nm–4 μm)
  • Mittlere Infrarot (4–40 μm)
  • Ferne Infrarot (40–300 μm),

wobei die genauen Grenzen sowohl des Infrarotbereichs als auch der Teilbereiche je nach Quelle leicht variieren. In der Astronomie werden diese Bereiche weiter in Wellenlängenbänder unterteilt, in denen die Atmosphäre weitgehend transparent ist. Diese Bänder sind mit Großbuchstaben bezeichnet nach den Namen der optischen Filter, die nur Strahlung der entsprechenden Wellenlängen passieren lassen: I (um 0,8 μm), z (um 0,9 μm), Y (um 1,0 μm), J (1,25 μm), H (1,65 μm), K (2,2 μm), L (3,45 μm), M (4,7 μm), N (10 μm) und Q (20 μm). Außerhalb dieser Bänder ist wasserdampfhaltige Luft praktisch undurchsichtig.

Als Tabelle:

Wellenlänge
in µm
Bezeichnung
0,65 R-Band
1,00 I-Band
1,25 J-Band
1,65 H-Band
2,20 K-Band
3,45 L-Band
4,70 M-Band
10 N-Band
20 Q-Band

Instrumentelle Voraussetzungen

Eine Computeranimation des Spitzer-Weltraumteleskops mit Infrarotdarstellung der Milchstraße im Hintergrund

Die oberhalb etwa 2 µm immer stärker störende Wärmestrahlung der Atmosphäre, des Teleskops und der Instrumente selbst prägt zum großen Teil die Instrumentenentwicklung.

Standorte für Teleskope

Infrarotstrahlung wird von der Erdatmosphäre sehr stark absorbiert, besonders durch den atmosphärischen Wasserdampf. Nur unterhalb 1 μm und in einigen kleinen Fenstern bis etwa 40 μm ist eine Beobachtung mit erdgebundenen Teleskopen möglich. Erdgebundene Infrarotteleskope werden deshalb bevorzugt an hohen und trockenen Standorten errichtet. Beispiele sind das Mauna-Kea-Observatorium oder die Observatorien der Europäische Südsternwarte (ESO). Auch die Eisschilde der Antarktis sind wegen ihrer Höhe, Kälte und Trockenheit von Interesse. Oft werden große Teleskope sowohl für optische als auch für Infrarotbeobachtungen benutzt, es gibt aber auch einige speziell für Infrarotbeobachtungen optimierte Teleskope.

Da mit zunehmender Höhe die Absorption stark zurückgeht, wurden schon seit den 1960ern Infrarotteleskope in hochfliegenden Ballons und ballistischen Höhenforschungsraketen verwendet. Seit den 1960ern werden auch hochfliegende Flugzeuge (Lear Jet Observatory, Kuiper Airborne Observatory, SOFIA) eingesetzt. Im Weltraum verschwindet nicht nur die atmosphärische Absorption, es wird auch möglich, kleinere Teleskope im Ganzen auf sehr tiefe Temperaturen zu kühlen und damit ihre störende Wärmestrahlung zu unterdrücken. Seit den 1980ern werden deshalb vermehrt Weltraumteleskope für den Infrarotbereich eingesetzt; von besonderer Bedeutung waren Infrared Astronomical Satellite (IRAS) und Infrared Space Observatory (ISO). Gegenwärtig (2009) aktiv sind Spitzer, ASTRO-F (Akari) und Herschel, in absehbarer Zukunft soll das James Webb Space Telescope (JWST) gestartet werden.

Instrumente

Die Instrumente der Infrarotastronomie ähneln in der Konzeption den Kameras und Spektrographen der visuellen Astronomie. Allerdings müssen sie stark gekühlt werden. Meist dienen dazu mit flüssigem Stickstoff oder Helium gekühlte Kryostaten oder mechanische Kühlgeräte. Die im Infrarotbereich z. B. für Linsen verwendeten optischen Materialien unterscheiden sich allerdings von den für sichtbares Licht gebräuchlichen.

Häufig wechseln Infrarotinstrumente in einem Choppen genannten Vorgang regelmäßig die Beobachtungsrichtung zwischen dem untersuchten Objekt und einer benachbarten Himmelsposition. Durch Subtraktion der an beiden Positionen gemessenen Signale kann die Quelle besser vom Hintergrund abgehoben werden.

Seit den 1990ern ist für Beobachtungen im nahen Infrarot der Einsatz adaptiver Optik zur Korrektur der Luftunruhe (Seeing) möglich. Damit erreichen große erdgebundene Teleskope ihre volle beugungsbegrenzte Auflösung und können in dieser Hinsicht mit dem Hubble Space Telescope konkurrieren.

Detektoren

Über den weiten Wellenlängenbereich der Infrarotastronomie kommen mehrere Arten von Detektoren zum Einsatz. Bis zu etwa 1 μm Wellenlänge sind normale, auch in der visuellen Astronomie gebräuchliche CCD-Detektoren empfindlich. Für größere Wellenlängen werden spezielle Detektoren benötigt.

Nach dem Zweiten Weltkrieg begann mit Detektoren aus Bleisulfid (PbS) der Aufstieg der Infrarotastronomie. Heute werden besonders für das nahe Infrarot nach dem Prinzip der Fotodiode funktionierende Detektoren benutzt, aus Halbleitermaterialien wie Indiumantimonid InSb und Quecksilbercadmiumtellurid (Hg,Cd)Te. Nach dem Prinzip des Fotowiderstands arbeitende Detektoren aus dotiertem Silizium (z. B. Si:Ga) und Germanium (z. B. Ge:Ga) finden bei längeren Wellenlängen Verwendung. Daneben werden, heute besonders bei den längsten Wellenlängen, thermische Detektoren (Bolometer) eingesetzt. Diese weisen die durch die Strahlung erzeugte Wärmeenergie im Detektor nach. Bis in die 1980er Jahre waren Infrarotdetektoren fast stets Einzeldetektoren, die für größere Aufnahmen über den Himmel geführt werden mussten. Seither sind Detektoranordnungen bis zu 2048*2048 Elementen bei den kurzen Wellenlängen und bis zu wenigen tausend Elementen bei langen Wellenlängen verfügbar geworden.

Besonderheiten der Infrarotastronomie

Durchdringung von interstellarem Staub

Der Andromedanebel im infraroten Licht bei 24 μm

Die Abschwächung (Extinktion) von elektromagnetischer Strahlung durch den interstellaren Staub variiert stark mit der Wellenlänge. Bei 2 µm in nahen Infrarot ist sie gegenüber dem sichtbaren Licht bereits auf etwa 1/10 zurückgegangen. Damit werden hinter Staub verborgenene Gebiete beobachtbar, z. B. junge Sterne, das galaktische Zentrum und die Kerne von Infrarotgalaxien.

Beobachtung kalter Objekte

Nach dem Planckschen Strahlungsgesetz strahlen kalte Himmelskörper wie z. B. Braune Zwerge oder noch tief in Molekülwolken eingebettete Sterne hauptsächlich im Infrarot. Viele im interstellaren Medium häufige Atome, Ionen und Moleküle haben wichtige Strahlungsübergänge im Infrarot. Besonders geeignet ist die Infrarotspektroskopie für die Bestimmung der Zusammensetzung und der physikalischen Bedingungen von Gas mit Temperaturen von einigen hundert Kelvin. Kalter (< 100 Kelvin) Staub im interstellaren Medium strahlt das absorbierte Licht im fernen Infrarot wieder ab, und ist oft ein großer Beitrag zur Energiebilanz astronomischer Objekte. Im mittleren Infrarot gibt es starke Emission von organischen Verbindungen im interstellaren Medium, die mit polyzyklischen aromatischen Kohlenwasserstoffen verwandt sind.

Beobachtungen bei hoher Rotverschiebung

Durch die kosmische Rotverschiebung wird das von Galaxien im frühen Universum ausgesandte sichtbare oder UV-Licht auf der Erde im nahen Infrarot beobachtet. Dies ist z. B. entscheidend für die Auslegung des James Webb Space Telescope.

Beobachtungsobjekte und wissenschaftliche Ziele

Im Sonnensystem

Planeten, Satelliten, Kometen und Asteroiden in unserem Sonnensystem werden intensiv im Infrarot beobachtet. Von IRAS wurden z. B. einige neue Asteroiden und Kometen sowie drei Staubbänder im Bereich des Asteroidengürtels entdeckt, die vermutlich durch Kollisionen innerhalb des Asteroidengürtels entstanden sind. Ein neues Ziel sind Eigenschaften von transneptunischen Objekte des Kuipergürtels und der Oortschen Wolke.

In der Milchstraße

Vergleich des Zentrums der Milchstraße bei verschiedenen Wellenlängen

Viele Infrarotbeobachtungen in der Milchstraße zielen auf ein Verständnis der Entstehung von Sternen. Großflächige Suchen nach jungen Sternen in allen Entwicklungsstadien und nach Braunen Zwergen werden kombiniert mit hochaufgelösten Aufnahmen und mit Spektroskopie. Zirkumstellare Staubscheiben ergaben erste Anzeichen für die Entstehung und Entwicklung von Planetensystemen um andere Sterne. Im Galaktischen Zentrum wird im Infrarot die Umgebung des nächsten supermassereichen schwarzen Lochs untersucht. Entwickelte Sterne und ihr Massenauswurf sind ein weiteres Ziel der Infrarotastronomie in unserer Milchstraße.

Infrarotspektroskopie dient zur Untersuchung des Zustands und der chemischen Zusammensetzung des interstellaren Mediums. Von IRAS wurde auch eine diffuse Infrarotstrahlung und filamentartige Staubwolken entdeckt, die sich bis in hohe galaktische Breiten ausdehnen.

Außerhalb unserer Milchstraße

Infrarotgalaxien strahlen im Gegensatz zur Milchstraße und den meisten anderen Galaxien bis zu 99 % ihrer Gesamtleuchtkraft im fernen Infrarot ab. Wechselwirkungen und Zusammenstöße mit anderen Galaxien tragen zu ihrer Entstehung bei. Die Infrarotastronomie untersucht den Beitrag hoher Sternentstehungsraten in Starbursts und von aktiven Galaxienkernen zu diesem Phänomen.

Die Entwicklung von Galaxien im frühen Universum wird immer intensiver im Infrarot studiert. Im nahen Infrarot wird das rotverschobene Licht der Sterne dieser Galaxien beobachtet, im fernen Infrarot und Submillimeterbereich der von Staub verschluckte und wieder abgestrahlte Anteil.

Geschichtliche Entwicklung und Ausblick

Nachdem William Herschel 1800 die Infrarotstrahlung der Sonne entdeckt hat, konnte Charles Piazzi Smyth 1856 erstmals eine infrarote Komponente im Spektrum des Mondlichts nachweisen. William Coblentz konnte ab 1915 Infrarotstrahlung von 110 Sternen nachweisen und gilt als einer der Begründer der IR-Spektroskopie. Diese frühen Messungen wurden meist mit Bolometern oder Thermoelementen gewonnen.

In den 1950ern brachten die Bleisulfid (PbS)-Detektoren einen Empfindlichkeitssprung im nahen Infrarot. Wie auch bei vielen späteren Detektorentwicklungen für das nahe und mittlere Infrarot profitierte die Astronomie hier vom militärischen Interesse an empfindlichen Detektorsystemen z. B. zur Verfolgung von Flugzeugen und Raketen. Um 1960 entwickelten Harold L. Johnson und Mitarbeiter das erste fotometrische System für das Infrarot. 1963 wurden mit den ersten Ballonmissionen Infrarotbeobachtungen des Mars durchgeführt und bereits 1967 wurde mit einer Serie von Raketenflügen die erste Kartierung des gesamten Himmels im mittleren Infrarot durchgeführt, hierbei wurden bei einer Gesamtbeobachtungszeit von nur 30 Minuten mehr als 2000 Infrarotquellen entdeckt. Im gleichen Jahr wurde auch das Mauna-Kea-Observatorium gegründet, das auch heute noch die größten Infrarotteleskope beherbergt. Anfang der 70er Jahre wurde ein militärischer C-141A Transportjet zu einem Infrarotteleskop umgebaut, das ab 1974 als Kuiper Airborne Observatory (KAO) Beobachtungen in 14 km Höhe durchführte.

Der Durchbruch der Infrarotastronomie kam jedoch in den 1980ern mit den ersten Satellitenmissionen. 1983 durchmusterte IRAS den Himmel. 1989 wurde COBE gestartet und entdeckte Anisotropien der kosmischen Hintergrundstrahlung. 1995 folgte mit dem Infrared Space Observatory (ISO) das erste echte Weltraumobservatorium für das Infrarot mit Kamera, Photometer und Spektrometern. 1997 folgte die Aufrüstung des Hubble-Weltraumteleskops mit dem Infrarotinstrument NICMOS, 2003 wurde das Spitzer-Weltraumteleskop gestartet. 2009 starteten die Missionen Planck, Herschel und WISE.

Die Entwicklung der Infrarotastronomie geht zur Zeit hauptsächlich in zwei Richtungen:

  • Beobachtungen mit höchster räumlicher Auflösung vom Boden, unter Nutzung adaptiver Optik oder der Interferometrie wie am Very Large Telescope Interferometer (VLTI). Geplante Riesenteleskope wie das European Extremely Large Telescope sind ohne adaptive Optik nicht denkbar.
  • weitere Steigerung der Empfindlichkeit von Flugzeug- und Satellitenteleskopen. In der Bauphase sind das Flugzeugobservatorium SOFIA sowie das Weltraumteleskop James Webb Space Telescope. Für die fernere Zukunft diskutiert werden TPF (NASA) bzw. Darwin (ESA), mit denen erstmals die direkte Beobachtung exosolarer Planeten möglich sein könnte.
Einige Himmelsdurchmusterungen im Infrarot
Bezeichnung Jahr Wellenlänge Bemerkungen
AFGRL Infrared Sky Survey 1967 4–20 µm Katalog mit 2363 Quellen
Two Micron Sky Survey (TMSS) 1968 2,2 µm 70 % des Himmels, über 5500 Quellen
Infrared Astronomical Satellite (IRAS) 1983 12–100 µm 96 % des Himmels, über 300000 Quellen
Cosmic Background Explorer COBE 1989 1,25–240 µm sehr präzise Spektroskopie bei geringer räumlicher Auflösung
Two Micron All Sky Survey (2MASS) 1997–2001 1,25–2,17 µm gesamter Himmel, ca. 500 Millionen Quellen
Bisher gestartete Infrarot-Weltraumteleskope
Bezeichnung Jahr
Infrared Astronomical Satellite (IRAS) 1983
Spacelab 2 Infrared Telescope 1985
Infrared Space Observatory (ISO) 1995–1998
Infrared Telescope in Space (IRTS) 1995
Midcourse Space Experiment (MSX) 1996
Wide Field Infrared Explorer (WIRE) 1999
Spitzer-Weltraumteleskop (SST) seit 2003
Akari (ASTRO-F) seit 2006
Herschel-Weltraumteleskop (HSO) seit 2009
Wide-Field Infrared Survey Explorer (WISE) seit 2009

Literatur

  • Ian Glass: Handbook of Infrared Astronomy. Cambridge University Press, Cambridge 1999, ISBN 0-521-63311-7 (Technische Grundlagen).
  • Ian S. McLean: Infrared astronomy with arrays - the next generation. Kluwer, Dordrecht 1994, ISBN 0-7923-2778-0
  • Rudolf A. Hanel: Exploration of the solar system by infrared remote sensing. Cambridge Univ. Press, Cambridge 2003, ISBN 0-521-81897-4
  • Thorsten Dambeck: In neuem Licht: Geburt und Tod der Sterne. Bild der Wissenschaft, 10/2008, S. 46 - 52, ISSN 0006-2375
  • Sascha Trippe: Ten thousand stars and one black hole - a study of the galactic center in the near infrared. Harland Media, Lichtenberg 2008, ISBN 978-3-938363-22-5

Weblinks


Wikimedia Foundation.

Игры ⚽ Поможем сделать НИР

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Infrarotastronomie — Ịnfrarot|astronomie,   Gebiet der Astronomie, das sich mit der Erforschung der von den kosmischen Objekten ausgesandten Strahlung im infraroten Spektralbereich (Infrarot) befasst. An die Infrarotastronomie schließt sich zu kürzeren Wellenlängen… …   Universal-Lexikon

  • Infrarotastronomie — ◆ In|fra|rot|as|tro|no|mie auch: Inf|ra|rot|ast|ro|no|mie 〈f.; Gen.: ; Pl.: unz.〉 Gebiet der Astronomie, das die aus dem Weltall in die Erdatmosphäre eindringenden, nur in großen Höhen messbaren Infrarotstrahlungen untersucht; →a. s.… …   Lexikalische Deutsches Wörterbuch

  • Infrarotastronomie — In|fra|rot|as|tro|no|mie [auch ... ro:t...] die; : ein Gebiet der Astronomie, das sich mit der Untersuchung der aus dem Weltraum kommenden infraroten Strahlung befasst …   Das große Fremdwörterbuch

  • Beobachtungsastronomie — Das polnische 1,3 Meter Teleskop an der chilenischen Sternwarte Las Campanas Die beobachtende Astronomie ist derjenige Teilbereich der Astronomie, der sich mit dem Nachweis und der Untersuchung von Strahlung und Teilchen beschäftigt, welche die… …   Deutsch Wikipedia

  • Himmelsbeobachtung — Das polnische 1,3 Meter Teleskop an der chilenischen Sternwarte Las Campanas Die beobachtende Astronomie ist derjenige Teilbereich der Astronomie, der sich mit dem Nachweis und der Untersuchung von Strahlung und Teilchen beschäftigt, welche die… …   Deutsch Wikipedia

  • Beobachtende Astronomie — Das polnische 1,3 Meter Teleskop an der chilenischen Sternwarte Las Campanas Die beobachtende Astronomie ist derjenige Teilbereich der Astronomie, der sich mit dem Nachweis und der Untersuchung von Strahlung und Teilchen beschäftigt, welche die… …   Deutsch Wikipedia

  • UV-Astronomie — Die Ultraviolettastronomie widmet sich der Untersuchung astronomischer Objekte im Bereich der Ultraviolettstrahlung (UV). In der Astronomie wird elektromagnetische Strahlung mit einer Wellenlänge zwischen etwa 10 und 380 Nanometer (nm) als… …   Deutsch Wikipedia

  • 2MASS — Der Two Micron All Sky Survey (2MASS) ist eine Durchmusterung des gesamten Himmels im nahen Infrarot bei Wellenlängen von 1,25 µm (J Band), 1,65 µm (H Band) und 2,17 µm (Ks Band) 2MASS wurde an zwei besonders dafür eingerichten automatisierten… …   Deutsch Wikipedia

  • Antike Astronomie — Darstellung des Claudius Ptolemäus mit personifizierter Astronomie aus der Enzyklopädie Margarita Philosophica von Gregor Reisch, 1503. Die Geschichte der Astronomie umfasst zeitlich die gesamte Kulturgeschichte der Menschheit. Die Astronomie… …   Deutsch Wikipedia

  • Astronomiegeschichte — Darstellung des Claudius Ptolemäus mit personifizierter Astronomie aus der Enzyklopädie Margarita Philosophica von Gregor Reisch, 1503. Die Geschichte der Astronomie umfasst zeitlich die gesamte Kulturgeschichte der Menschheit. Die Astronomie… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”