- Rosetta@home
-
Rosetta@home Bereich: Biochemie Ziel: Vorhersage von Proteinstrukturen Betreiber: Universität von Washington Land: USA Plattform: BOINC Website: boinc.bakerlab.org/rosetta Projektstatus Status: aktiv Beginn: 16. September 2005 Ende: noch aktiv Rosetta@home ist ein nichtkommerzielles Projekt, das mittels der Technik des verteilten Rechnens versucht, Proteinstrukturen und Proteinbindungen aus einer Aminosäuresequenz vorherzusagen.
Dabei werden Algorithmen entwickelt und getestet, die eine zuverlässige Strukturvorhersage ermöglichen. Eine akkurate Vorhersage von Proteinstrukturen könnte sich als sehr hilfreich für die Entwicklung von Heilverfahren für beispielsweise AIDS, Krebs, Malaria, Alzheimer und Virenerkrankungen erweisen.
Das verwendete Computerprogramm wird im BakerLab der University of Washington unter der Leitung von Prof. Dr. Baker entwickelt.
Das Projekt wurde offiziell am 16. September 2005 gestartet. Die Basis der Berechnungen bildet die Software BOINC von der University of California, Berkeley.
Das Projekt wurde bereits auf knapp 990.000 Rechnern installiert[1] und hat eine derzeitige Rechenleistung von ungefähr 90-110 TeraFLOPS (Stand: Juli 2011),[2] die je nach Tagesleistung schwanken kann.
Inhaltsverzeichnis
Hintergrund, wissenschaftliche Relevanz und mögliche Anwendungen
Proteine sind die wichtigsten Funktionsträger des Körpers. Es handelt sich dabei um lange Ketten aus miteinander kondensierten Aminosäuren. Biologen und Biochemiker wissen seit etwa 40 Jahren, dass die Form, die ein Protein annimmt, in der lebenden Zelle ausschließlich von der Reihenfolge der in ihm vorkommenden Aminosäuren bestimmt wird. Diese Form wiederum bestimmt, welche Funktion dieses Protein wahrnehmen kann.
Welche Proteine der Körper bilden kann, ist im Erbgut, der DNA, festgelegt, die im Laufe des Humangenomprojekts vollständig kartiert wurde. Im Prinzip sind also die Aminosäuresequenzen sämtlicher Proteine des Körpers bekannt. Theoretisch müsste es daher möglich sein, die Form dieser Proteine aus ihrer Sequenz herzuleiten und damit ihre Funktion zu bestimmen.
Die bis vor kurzem besten Methoden zur Bestimmung von Proteinstrukturen sind die Kristallstrukturanalyse und die Kernspinresonanz. Beide sind jedoch äußerst zeit- und kostenaufwändig, nicht fehlerfrei und für einige Proteine (noch) nicht möglich. Deswegen versucht man, die Proteinstruktur rechnerisch anhand der Aminosäurestruktur vorherzusagen. Die Idee dahinter ist, dass aus allen denkbaren Strukturen genau diejenige mit der niedrigsten Energie auch die Struktur sein wird, die ein Protein in der Natur einnimmt.
Das Problem dabei ist die ungeheure Menge an verschiedenen Strukturen, die eine Kette aus Aminosäuren bilden kann: Sie nimmt exponentiell mit der Anzahl an Aminosäuren zu. Viele Proteine bestehen aber aus hunderten oder tausenden Aminosäuren. Es hat also keinen Sinn, alle möglichen Strukturen durchzuprobieren, da die Wahrscheinlichkeit, dabei die richtige Struktur zu finden, extrem gering ist.
Die Strategie der Rosetta-Software besteht darin, die Strukturen kurzer Abschnitte von Proteinen aus bekannten Proteinen mit abschnittsweise gleichen Aminosäurefolgen zu erschließen und dann diese kurzen Abschnitte und die dazwischenliegenden Sequenzen miteinander zu verbinden. Dann werden zufällige räumliche Anordnungen dieser Abschnitte erzeugt und deren Energie berechnet. Dies geschieht in zwei Phasen, der „Sprungphase“, in der große Abschnitte bewegt werden, und einer nachfolgenden „Relaxationsphase“, in der die Struktur mit der niedrigsten Energie aus der Sprungphase nur minimal verändert wird, um langsam den tiefstgelegenen Ort in der „Energielandschaft“ zu finden, die das Ausgangsmodell umgibt.
Jeder beteiligte Computer erstellt für jedes Ausgangsmolekül mehrere (wenige bis einige Hundert, je nach Rechenleistung und Proteingröße) zufällige gewählte Modelle und geht dann die oben genannten Phasen durch. Jeder solche Versuch entspricht in etwa dem Vorgehen, an einer beliebigen Stelle auf einer Karte nach dem niedrigsten Punkt zu suchen und sich dabei zum Beispiel langsam an Bächen oder Wegen entlang zu arbeiten. Man wird dabei immer nur die tiefste Stelle in einer bestimmten Umgebung finden. Nur, wenn man diese Prozedur häufig an immer wieder anderen Stellen wiederholt, hat man mit hoher Wahrscheinlichkeit den tatsächlich tiefsten Punkt auf der Karte gefunden. Am Ende ist für jedes übermittelte Molekül auf jedem Rechner eine Struktur mit der absolut niedrigsten Energie in der untersuchten Umgebung gefunden, die an das Projekt übermittelt wird. Aus allen übermittelten Strukturen ist wiederum diejenige mit der absolut niedrigsten Energie am wahrscheinlichsten die, die der natürlichen Anordnung am besten entspricht. Jeder Teilnehmer hat also sozusagen eine oder mehrere Einzelkarten aus einer großen Sammlung von Karten eines viel größeren Gesamtgebiets durchforstet und das Projekt erhält für jeden Kartenteil nur die Lage des absolut niedrigsten Punktes in diesem Gebiet.
Ziel von Rosetta ist es, nicht nur häufig, sondern immer die richtige Struktur vorhersagen zu können und dies auch mit hoher Genauigkeit zu tun, was die Anordnung der einzelnen Atome angeht. Nur dann kann aus der Struktur auch sicher auf die Funktion des Proteins geschlossen werden. Neben Rosetta gibt es noch eine Reihe weiterer Computerprogramme, die anhand der Aminosäuresequenz die Struktur von Proteinen vorherzusagen versuchen. Allerdings gibt es noch keinen Algorithmus, der dies mit vertretbarem Aufwand zuverlässig berechnen kann. Rosetta@home testet verschiedene Algorithmen um eine zuverlässige Vorhersage zu ermöglichen.
Eine gelungene Strukturvorhersage würde es über die Bestimmung der Struktur natürlicher Proteine hinaus ermöglichen, künstlich Proteine mit ganz bestimmter Form und damit Funktion herzustellen. Diese Technik nennt man Proteindesign. Sie würde bahnbrechende Möglichkeiten bei der Bekämpfung vieler Krankheiten wie Aids, Krebs, Alzheimer etc. ermöglichen. Eine Reihe von Krankheiten entstehen z.B. dadurch, dass Proteine sich nicht in ihre eigentliche, natürliche Form falten, Alzheimer ist ein Beispiel dafür: Proteine, die eigentlich einzeln vorkommen sollten, verklumpen plötzlich zu so genannten Amyloid-Plaques und stören die Funktion unseres Gehirns.
Ein anderes Beispiel sind Virusinfektionen: Viren dringen in unsere Zellen ein und kapern dann deren Proteinfabriken. Sie lassen die Zellen tausende Kopien der Virenproteine und des Virenerbguts herstellen, die sich zu neuen Viren zusammensetzen, woran die Zelle schließlich stirbt. Anschließend werden viele tausend neue Viren im Körper freigesetzt, die wiederum neue Zellen infizieren.
Wenn man aber zentrale Virenproteine mit Hilfe genau passender, kleiner Proteine blockieren könnte, wäre auch die Infektion gestoppt. Man könnte z.B. die Bildung der Virenhülle oder überhaupt das Ablesen des viralen Erbguts durch die menschlichen Zellen verhindern. Genau darauf zielt das Proteindesign ab: besonders geeignete Angriffspunkte im Erbgut bzw. an den Proteinen der Viren sollen identifiziert durch gezielt entwickelte Moleküle blockiert werden.
Forscherwettbewerb zur Proteinstrukturvorhersage
Vom Mai bis August 2008 beteiligte sich Rosetta@home an dem zweijährlich stattfindenden Wettbewerb zur Proteinstrukturvorhersage CASP. Baker hat mit der Rosetta-Software schon an früheren Auflagen dieses Wettbewerbers teilgenommen und dabei bewiesen, dass Rosetta mit zu den besten Vorhersageinstrumenten zur Bestimmung der Proteinstruktur gehört. So konnte auch in CASP 8 gezeigt werden, dass mit genügend Rechenleistung eine recht zuverlässige Vorhersage von kleineren bis mittelgroßen Proteinen möglich ist. Rosetta@home wird voraussichtlich auch in den nächsten CASP-Wettbewerben wieder mitrechnen, um die Qualität der Vorhersagen mit den der anderen Teilnehmer zu vergleichen.
Baker Lab
Das Baker Laboratory hat seinen Sitz an der University of Washington.
Leitender Wissenschaftler ist David Baker, Professor der Biochemie an der University of Washington und Forscher am Howard Hughes Medical Institute, der im April 2006 zum Mitglied der United States National Academy of Science gewählt wurde.
Siehe auch
- Proteinstruktur
- Proteinfaltung
- Verteiltes Rechnen
- Foldit
- BOINC
- SIMAP
- POEM@home
- Predictor@home
- Folding@home
Weblinks
- Rosetta@home – offizielle Projektseite
- RALPH@home (englisch) – offizielles Alpha-Test-Projekt für Rosetta@home
- David Baker's Rosetta@home journal (englisch) – Forum vom Projektleiter bei Rosetta@home
- Rosetta@home - Rechenkraft – Seite bei Rechenkraft
- Boinc all Project Stats (englisch) – Übersicht zu Rosetta@home bei Boinc statistics
- Baker Lab
Literatur
- Fleishman, S. J., Whitehead T. A., Ekiert D. C., Dreyfus C., Corn J. E., Strauch E. - M., Wilson I. A., & Baker D.: Computational design of proteins targeting the conserved stem region of influenza hemagglutinin. In: Science. Band 332, Nummer 6031, Mai 2011, S. 816-821, ISSN 1095-9203. doi:10.1126/science.1202617. PMID 21566186. PMC 3164876.
- Raman, S., Lange O. F., Rossi P., Tyka M., Wang X., Aramini J., Liu G., Ramelot T. A., Eletsky A., Szyperski T., Kennedy M. A., Prestegard J., Montelione G. T., & Baker D.: NMR Structure Determination for Larger Proteins Using Backbone-Only Data. In: Science. Band 327, Nummer 5968, Februar 2010, S. 1014-1018, ISSN 1095-9203. doi:10.1126/science.1183649. PMID 20133520. PMC 2909653.
Einzelnachweise
- ↑ Rosetta@home - Rechnerübersicht – Seite bei BOINCstats; Stand: 24. Mai 2011
- ↑ [1] Rosetta@home
BOINC-ProjekteAktuelle Projekte: ABC@Home | Astropulse | CAS@home | ClimatePrediction.net | DistrRTgen | Einstein@home | Enigma@Home | FreeHAL | Ibercivis | Lattice Project | Leiden Classical | LHC@Home | Malaria Control Project | μFluids@Home | MilkyWay@home | NFS@Home | Orbit@home | PrimeGrid | Quake-Catcher Network | Rosetta@home | Seasonal Attribution Project | SETI@home | SIMAP | SZTAKI Desktop Grid | World Community Grid
Beta-Projekte BURP | CPDN Beta | Collatz Conjecture | Constellation (Plattform) | Cosmology@Home | Docking@Home | EDGeS@Home | GPUGRID.net | Ibercivis | Lattice Project | MindModeling@Home | OPTIMA@HOME | POEM@home | QMC@home | Renderfarm.fi | RNA World | SETI@home beta | Spinhenge@Home | Superlink@Technion | Test4Theory | WEP-M+2 Project | yoyo@home
Alpha-Projekte AlmereGrid Boinc Grid | Biochemical Library | CAS@home | Chess960@home | DistributedDataMining | DNA@Home | DNETC@HOME | DrugDiscovery@Home | eOn | FreeHAL | Goldbach's Conjecture Project | Hydrogen@Home | Magnetism@home | Mersenne@home | Moo! Wrapper | NFS@Home | NumberFields@home | Pirates@home | Primaboinca | QuantumFIRE | RADIOACTIVE@HOME | RALPH@home | RSA Lattice Siever | SAT@home | SLinCA@Home | Sudoku@vtaiwan | Surveill@Home | Virtual Prairie | Volpex | VTU@Home | WUProp@Home | YAFU
Beendete/nicht-aktive Projekte: 3x+1@Home | APS@Home | AQUA@home | Artificial Intelligence System | BBC Climate Change Experiment | BRaTS@Home | Cell Computing | Cels@Home | DepSpid | DynaPing | Eternity2.net | Genetic Life | HashClash | Nano-Hive@Home | NQueens@home | Predictor@home | Proteins@home | Ramsey@Home | Rectilinear Crossing Number | Reversi | Riesel Sieve | RND@home | SciLINC | SHA-1 Collision Search Graz | Sudoku project | Tanpaku | Virus Respiratorio Sincitial | XtremLab
Wikimedia Foundation.
Schlagen Sie auch in anderen Wörterbüchern nach:
Rosetta@home — Saltar a navegación, búsqueda Rosetta@home Desarrollador Baker laboratory, University of Washington; Rosetta Commons http://boinc.bakerlab.org/rosetta Información gene … Wikipedia Español
Rosetta@home — Разработчик Baker laboratory, Вашингтонский университет, Rosetta Commons Операционная система … Википедия
Rosetta@home — est un projet de calcul distribué. Son objectif est déterminer la structure de protéines, afin de pouvoir élaborer des traitements contre les principales pathologies humaines. Ce projet est mené par l université de Washington. Le projet a en… … Wikipédia en Français
Rosetta@home — infobox software name = Rosetta@home caption = Rosetta@home screensaver for CASP 8 target [http://predictioncenter.gc.ucdavis.edu/casp8/target.cgi?id=119 view=all T0482] developer = Baker laboratory, University of Washington; Rosetta Commons… … Wikipedia
Rosetta (disambiguation) — Rosetta may refer to:As a placename: * Rosetta, the anglicised name of the city of Rashid, Egypt, famous as the location of the Rosetta Stone * Rosetta, Tasmania, suburb of Hobart, Tasmania, Australia * Rosetta, Belfast in Northern IrelandAs a… … Wikipedia
ROSETTA — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Rosetta peut prendre diverses significations. Il s agit principalement d un prénom féminin ou bien le nom anglais de la ville égyptienne de Rosette (en… … Wikipédia en Français
Rosetta — Saltar a navegación, búsqueda Piedra de Rosetta Piedra de granito donde se halla una inscripción en jeroglífico, demótico y griego. Rosetta (Egipto), también conocida como Rashid, la ciudad donde se encontró la piedra antes mencionada. Rosetta… … Wikipedia Español
Rosetta Stone — For other uses, see Rosetta Stone (disambiguation). The Rosetta Stone in the British Museum The Rosetta Stone is an ancient Egyptian granodiorite stele … Wikipedia
Rosetta — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Rosetta peut prendre diverses significations. Il s agit principalement d un prénom féminin ou bien le nom anglais de la ville égyptienne de Rosette (en… … Wikipédia en Français
Rosetta — Das Wort Rosetta bezeichnet Orte: einen ägyptischen Ort, siehe Rosette (Ägypten) einen Orte in den USA, siehe Rosetta (Mississippi) einen südafrikanischen Ort, siehe Rosetta (Südafrika) einen Berggipfel in der Palagruppe in den Dolomiten, siehe… … Deutsch Wikipedia