Vollständig regulärer Raum

Vollständig regulärer Raum

Im mathematischen Teilgebiet der Topologie versteht man unter einem vollständig regulären Raum einen topologischen Raum mit speziellen Trennungseigenschaften. Dabei handelt es sich um topologische Räume, die im unten präzisierten Sinne hinreichend viele stetige Funktionen besitzen, um zu einer reichhaltigen Theorie zu führen. Die Bedeutung dieses Begriffs wird durch eine Vielzahl äquivalenter Charakterisierungen deutlich.

Inhaltsverzeichnis

Definition

Die Funktion f trennt den Punkt x von der Menge A.

Ein vollständig regulärer Raum ist ein topologischer Hausdorff-Raum X, in dem es zu jeder abgeschlossenen Menge A\subset X und jedem Punkt x\in X \setminus A eine stetige Funktion f:X\rightarrow {\mathbb  R} gibt mit f(x) = 1 und f(a) = 0 für alle a\in A.

Im Sinne dieser Definition besitzt ein vollständig regulärer Raum hinreichend viele stetige Funktionen, um abgeschlossene Mengen von außerhalb liegenden Punkten zu trennen.

Vollständig reguläre Räume werden nach dem russischen Mathematiker Andrei Nikolajewitsch Tichonow auch Tichonow-Räume genannt oder auch T-Räume, da die definierende Eigenschaft zwischen den Trennungsaxiomen T3 und T4 liegt. Es gibt Autoren, die in der Definition der vollständigen Regularität nicht die Hausdorff-Eigenschaft fordern und unter einem Tichonow-Raum einen hausdorffschen vollständig regulären Raum verstehen.

Beispiele

  • Normale Räume sind vollständig regulär, wie leicht aus dem Lemma von Urysohn folgt. Insbesondere sind alle metrischen Räume vollständig regulär.
  • Der Niemytzki-Raum ist ein Beispiel eines vollständig regulären Raumes, der nicht normal ist.
  • Lokalkompakte Räume sind vollständig regulär.
  • Hausdorff'sche topologische Vektorräume sind vollständig regulär, die unendlich-dimensionalen unter ihnen sind nicht lokalkompakt.
  • Allgemeiner gilt, dass Hausdorff'sche topologische Gruppen vollständig regulär sind.
  • Noch allgemeiner sind alle Hausdorff'schen (je nach Definition), uniformen Räume Tychonoff-Räume. Im Gegensatz zu obigen Beispielen liefert das eine umkehrbare Charakterisierung: Jeder Tychonoff-Raum (X,τ) ist uniformisierbar, d.h. es gibt eine (i.A. nicht eindeutige) Uniformität auf X, die wieder die ursprüngliche Topologie τ erzeugt.

Permanenz-Eigenschaften

  • Unterräume vollständig regulärer Räume sind wieder vollständig regulär.
  • Beliebige Produkte vollständig regulärer Räume sind wieder vollständig regulär.

Charakterisierungen

Zu einem topologischen Raum betrachte man die Menge C(X) aller stetigen Funktionen X\rightarrow {\mathbb R}. Definitionsgemäß ist für jeden topologischen Raum X die Initialtopologie bzgl. C(X) gröber als die Ausgangstopologie auf X. Es gilt:

  • Ein Hausdorff-Raum ist genau dann vollständig regulär, wenn seine Topologie mit der Initialtopologie bzgl. C(X) zusammenfällt.

Mittels der Stone-Čech-Kompaktifizierung zeigt man leicht:

Uniforme Räume induzieren eine Topologie auf der unterliegenden Menge, siehe Artikel uniformer Raum. Es gilt:

  • Ein Hausdorff-Raum X ist genau dann vollständig regulär, wenn seine Topologie durch eine uniforme Struktur induziert wird.

Die uniforme Struktur ist nicht eindeutig durch den vollständig regulären Raum festgelegt. Uniforme Räume sind vollständig reguläre Räume mit einer Zusatzstruktur, nämlich der uniformen Struktur. Die im Artikel uniformer Raum definierten Begriffe Vollständigkeit, gleichmäßige Stetigkeit und gleichmäßige Konvergenz hängen von der uniformen Struktur ab, sie lassen sich nicht rein topologisch im Kontext vollständig regulärer Räume behandeln.

Eine Topologie auf einer Menge X wird durch eine Familie \mathcal D von Pseudometriken erzeugt, wenn die offenen Mengen genau diejenigen Mengen U\subset X sind, für die es zu jedem x\in U endlich viele Pseudometriken d_1,\ldots, d_n \in {\mathcal D} und ein \epsilon > 0 gibt mit \{y\in X; d_j(x,y)< \varepsilon, j=1,\ldots, n\} \subset U. Es gilt:

  • Ein topologischer Hausdorff-Raum ist genau dann vollständig regulär, wenn seine Topologie durch eine Familie von Pseudometriken erzeugt wird.

Eigenschaften

Vollständig reguläre Räume sind regulär. Daher hat jeder Punkt eine Umgebungsbasis aus abgeschlossenen Mengen.

Ist X ein topologischer Hausdorff-Raum mit abzählbarer Basis, so sind äquivalent:

Literatur


Wikimedia Foundation.

Игры ⚽ Нужен реферат?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Regulärer Raum — In der Topologie und verwandten Gebieten der Mathematik sind reguläre Räume spezielle topologische Räume, in denen jede abgeschlossene Teilmenge A und jeder nicht in A liegende Punkt x durch Umgebungen getrennt sind. Ein T3 Raum ist ein regulärer …   Deutsch Wikipedia

  • Tichonow-Raum — Im mathematischen Teilgebiet der Topologie versteht man unter einem vollständig regulären Raum einen topologischen Raum mit speziellen Trennungseigenschaften. Dabei handelt es sich um topologische Räume, die im unten präzisierten Sinne… …   Deutsch Wikipedia

  • Tychonoff-Raum — Im mathematischen Teilgebiet der Topologie versteht man unter einem vollständig regulären Raum einen topologischen Raum mit speziellen Trennungseigenschaften. Dabei handelt es sich um topologische Räume, die im unten präzisierten Sinne… …   Deutsch Wikipedia

  • T5-Raum — In der Topologie und verwandten Gebieten der Mathematik betrachtet man oft nicht alle topologischen Räume, sondern stellt bestimmte Bedingungen, die von den interessierenden Räumen erfüllt werden sollen. Einige dieser Bedingungen nennt man… …   Deutsch Wikipedia

  • T3-Raum — In der Topologie und verwandten Gebieten der Mathematik sind reguläre Räume spezielle topologische Räume, die gewisse angenehme Eigenschaften erfüllen. Definition Sei X ein topologischer Raum. Wir sagen, dass zwei Teilmengen Y und Z von X durch… …   Deutsch Wikipedia

  • Uniformer Raum — Uniforme Räume sind im Teilgebiet Topologie der Mathematik Verallgemeinerungen von metrischen Räumen. Jeder metrische Raum kann auf natürliche Weise als uniformer Raum betrachtet werden, und jeder uniforme Raum kann auf natürliche Weise als… …   Deutsch Wikipedia

  • R1-Raum — topologischer Raum berührt die Spezialgebiete Mathematik Topologie ist Spezialfall von Mengensystem umfasst als Spezialfälle …   Deutsch Wikipedia

  • Lokalkompakter Raum — Im mathematischen Teilgebiet der Topologie sind die lokal kompakten Räume eine Klasse topologischer Räume, die eine gewisse lokale Endlichkeitsbedingung erfüllen. Inhaltsverzeichnis 1 Definition 2 Folgerungen 3 Permanenz Eigenschaften …   Deutsch Wikipedia

  • topologischer Raum — topologischer Raum,   ein Paar (X, T ), bestehend aus einer Menge X und einer topologischen Struktur T auf X, d. h. einer Teilmenge T der Potenzmenge von X, die invariant …   Universal-Lexikon

  • Metrisierbarer Raum — Ein Metrisierbarer Raum ist ein Begriff der Teildisziplin Topologie der Mathematik. Da die metrischen Räume Spezialfälle der topologischen Räume sind, liegt es nahe, zu fragen, wann ein topologischer Raum metrisierbar ist, das heißt, welche… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”