Wechselspannungsbrücke

Wechselspannungsbrücke

Mit einer Wechselspannungsbrücke können in der elektrischen Messtechnik die Kapazitätswerte von Kondensatoren und die Induktivitätswerte von Spulen gemessen werden, ferner Kennwerte für deren Verluste.

Darüber hinaus werden Wechselspannungsbrücken zu verschiedenen anderen Aufgaben eingesetzt, z. B. als phasendrehende Schaltung.

Inhaltsverzeichnis

Passive lineare Bauteile unter Wechselspannung

Ein realer Kondensator wird durch eine (ideale) Kapazität und einen ohmschen Widerstand angenähert beschrieben, die in einem Ersatzschaltbild in Parallelschaltung oder Reihenschaltung angeordnet sind. Entsprechendes gilt für die Spule mit Induktivität und ohmschem Widerstand.

Die Bauteile bilden in einem Wechselstromkreis komplexe Widerstände Z . Deren Größe kann man angeben durch Betrag Z und Winkel φ oder durch Realteil R und Imaginärteil X

\underline Z =Z\,e^{\mathrm j \varphi} =R+\mathrm j X

Bei einer Induktivität L ist \underline Z = \mathrm j \omega L\ ; bei einer Kapazität C ist \underline Z = \frac1{\mathrm j \omega C} .

Dabei steht ω = 2πf für die Kreisfrequenz und f für die Frequenz der anliegenden sinusförmigen Wechselspannung; j steht für die imaginäre Einheit mit j² = − 1.

Messschaltungen

Grundschaltung einer Wechselspannungs-Messbrücke

Prinzip der Messbrücke

Die Wechselspannungsbrücke ist aufgebaut wie eine Wheatstone-Brücke, siehe nebenstehendes Schaltbild. Sie benötigt eine Wechselspannungsquelle zur Speisung und ein für Wechselspannung empfindliches Messgerät zur Bestimmung der Brückenquerspannung; die vier Widerstände dürfen komplex sein. Die Brücke wird als abgeglichen bezeichnet, wenn die Querspannung gleich null ist, obwohl die Amplitude der Speisespannung größer null ist. In diesem Fall ist

\frac{\underline Z_1}{\underline Z_2} =\frac{\underline Z_3}{\underline Z_4}

oder

\underline Z_1 \cdot \underline Z_4 =\underline Z_2 \cdot \underline Z_3

Um diese komplexe Abgleichbedingung zu erfüllen, müssen die

Betragsbedingung Z_1\ Z_4=Z_2\ Z_3 und die

Winkelbedingung \varphi_1 +\varphi_4 =\varphi_2 +\varphi_3\ erfüllt sein.

Ob eine Brücke überhaupt abgleichbar ist, erkennt man daran, ob die Winkelbedingung erfüllbar ist.

Bei einer abgeglichenen Brücke berechnet man den Messwert damit, dass die komplexe Abgleichbedingung in Real- und Imaginärteil erfüllt sein muss.

Zur Einstellung des Abgleichs sind zwei veränderbare Bauteile erforderlich. Je nach Schaltung gibt es frequenzunabhängige und frequenzabhängige Lösungen. Bei letzteren kann die Brückenquerspannung nicht auf null, sondern nur auf ein Minimum gebracht werden, wenn die Speisespannung Oberschwingungsanteile enthält.

Unter den vielen entwickelten Wechselspannungs-Messbrücken haben sich zwei Ausführungen besonders bewährt; sie werden hier beschrieben.

Wien-Brücke

Diese Brücke eignet sich zur Messung einer Kapazität. In nächsten Schaltbild liegt der auszumessende, im Allgemeinen verlustbehaftete Kondensator auf der Position von \underline Z_1 und wird hier dargestellt im Parallel-Ersatzschaltbild.

Wechselspannungsmessbrücke zur Messung einer Kapazität

Mit der komplexen Abgleichbedingung in der Form

\frac1{\underline Z_x} =\frac{\underline Z_4 }{\underline Z_3 }\ \frac1{\underline Z_2}

und

\frac1{\underline Z_x} =\frac1{R_x} +\mathrm j \omega C_x \quad ;\quad \underline Z_3 = R_3

und entsprechend für \underline Z_2 und \underline Z_4 gemäß Schaltung, erhält man

\frac1{R_x} +\mathrm j \omega C_x =\frac{R_4}{R_3} \left (\frac1{R_{2p}} +\mathrm j \omega C_{2p} \right)

Realteil:

\frac1{R_x}=\frac{R_4}{R_3} \frac1{R_{2p}} \quad ; \quad R_x =\frac{R_3}{R_4} R_{2p}

Imaginärteil:

\omega C_x =\frac{R_4}{R_3}\omega C_{2p} \quad ; \quad C_x =\frac{R_4}{R_3} C_{2p}

Bei Kondensatoren mit hoher Güte bzw. geringem Verlust kann R2p einen sehr hohen Wert annehmen, der schwer einstellbar ist. Im Grenzfall eines idealen Kondensators geht R2p → ∞ . Für die Messung an solchen Bauteilen wird auf der Position von Z2 statt der Parallelschaltung eine Reihenschaltung verwendet, bei der der ohmsche Widerstand R2r einen kleinen Wert annimmt, im idealen Grenzfall R2r → 0. Die mathematische Behandlung hierzu ist schwieriger, und das Ergebnis ist frequenzabhängig.

Wechselspannungsmessbrücke zur Messung einer Kapazität mit geringem Verlust

Mit der komplexen Abgleichbedingung in der Form

\frac{\underline Z_2}{\underline Z_x} =\frac{\underline Z_4}{\underline Z_3}

und \underline Z_2 = R_{2r} +\frac{1}{\mathrm j \omega C_{2r}}

erhält man

\left(R_{2r} +\frac1{\mathrm j \omega C_{2r}}\right) \left(\frac1{R_x} +\mathrm j \omega C_x\right) =\frac{R_4}{R_3}

Realteil:

\frac{R_{2r}}{R_x} +\frac{C_x}{C_{2r}} = \frac{R_4}{R_3}

Imaginärteil:

\omega C_x R_{2r} =\frac{1}{\omega C_{2r} R_x} \quad ;\quad \omega C_{2r} R_{2r} =\frac{1}{\omega C_x R_x}

Durch Eliminierung von Rx erhält man eine Gleichung für Cx

\frac{C_x}{C_{2r}} \left(\omega^2 C_{2r}^2 R_{2r}^2 +1 \right) =\frac{R_4}{R_3}

Eine Kapazität mit geringem Verlust ist im Parallel-Ersatzschaltbild gekennzeichnet durch R_x \gg \frac{1}{\omega C_x} . Dann wird

\omega C_{2r} R_{2r} =\frac{1}{\omega C_x R_x} \ll 1

und die Gleichung für Cx vereinfacht sich zu

C_x = \frac{R_4}{R_3} C_{2r}

In dieser Näherungslösung entfällt die Frequenzabhängigkeit. Anders ist das bei der Kennzeichnung des Verlustes. In dieser Schaltung ergibt sich unabhängig von der Näherung

R_x=\frac{1}{\omega ^2 C_x C_{2r}R_{2r}}

Maxwell-Wien-Brücke

Eine der Wien-Brücke entsprechende Schaltung zur Messung einer Induktivität mit einer zweiten Induktivität ist die Maxwell-Brücke. Diese liefert allerdings keine hochwertigen Ergebnisse, da

  1. keine Spulen zur Verfügung stehen, die in ihrer Induktivität zu Vergleichszwecken hinreichend genau bekannt sind,
  2. Spulen durch ihre Leitungswiderstände in höherem Maße verlustbehaftet sind.

Beide Nachteile werden in der Maxwell-Wien-Brücke vermieden, die als Referenzbauteil einen Kondensator verwendet. In nebenstehendem Schaltbild liegt die auszumessende verlustbehaftete Spule auf der Position von \underline Z_1 und wird hier dargestellt im Reihen-Ersatzschaltbild.

Wechselspannungsmessbrücke zur Messung einer Induktivität

Mit der komplexen Abgleichbedingung in der Form

\underline Z_x =\frac{\underline Z_2\,\underline Z_3}
{\underline Z_4}

und

\underline Z_x =R_x +\mathrm j \omega L_x
\underline Z_2 =R_2 usw. gemäß Schaltung

erhält man aus dem Imaginärteil der Abgleichbedingung die Induktivität

L_x=R_2R_3C_4\

und aus dem Realteil den ohmschen Verlustwiderstand

R_x=\frac{R_2R_3}{R_4}\

Anzeige und Abgleich

Bei einer gleichspannungsgespeisten Messbrücke, z. B. Wheatstone-Brücke in der bevorzugten Ausführung, ist die Querspannung positiv oder negativ; das Vorzeichen gibt die Richtung an, in der verstellt werden muss, um zum Abgleich zu gelangen.

Bei einer Wechselspannungsspeisung liefert die übliche Gleichrichtwert- oder Effektivwertbildung zur Anzeige einer Wechselspannung keinen Vorzeichenwechsel und somit kein Merkmal zur Richtung. Abhilfe schafft die gesteuerte Gleichrichtung, die ein positives Vorzeichen etwa für „zu viel“ oder ein negatives Vorzeichen für „zu wenig“ erzeugt.

Mit einer Gleichrichter-Steuerspannung synchron zur Brückenspeisespannung ist der R-Abgleich möglich, mit einer Steuerspannung um 90° versetzt zur Speisespannung der C-Abgleich. In Brücken mit manuellem Abgleich wird bei einer Phasenverschiebung, die zwischen 0° und 90° liegt, mehrmals zwischen R-Abgleich und C-Abgleich gewechselt und iterativ die Anzeige auf minimal, im Idealfall null eingestellt.

Siehe auch

Wien-Robinson-Brücke, Schering-Brücke

Einzelnachweise und Fußnoten


Wikimedia Foundation.

Игры ⚽ Поможем решить контрольную работу

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Schering-Messbrücke — Die Schering Brücke ist eine Wechselspannungsbrücke und wird zur Bestimmung der Kapazität und des Verlustfaktors von Kondensatoren, vorwiegend in der Hochspannungstechnik, eingesetzt. Sie wurde erstmals 1920 von Harald Schering verwendet.… …   Deutsch Wikipedia

  • Maxwell-Wien-Brücke — Mit einer Wechselspannungsbrücke können in der elektrischen Messtechnik die Kapazitätswerte von Kondensatoren und die Induktivitätswerte von Spulen gemessen werden. Darüber hinaus werden Wechselspannungsbrücken zu verschiedenen anderen Aufgaben… …   Deutsch Wikipedia

  • Messbrücke — Brückenschaltung mit Spannungsquelle. Eine Brückenschaltung, auch H Schaltung, H Brücke oder Vollbrücke genannt, ist eine elektrische Schaltung, bei der in der Grundform fünf Zweipole in Form des Großbuchstabens H zusammengeschaltet sind. Die… …   Deutsch Wikipedia

  • Meßbrücke — Brückenschaltung mit Spannungsquelle. Eine Brückenschaltung, auch H Schaltung, H Brücke oder Vollbrücke genannt, ist eine elektrische Schaltung, bei der in der Grundform fünf Zweipole in Form des Großbuchstabens H zusammengeschaltet sind. Die… …   Deutsch Wikipedia

  • Wechselstrombrücke — Mit einer Wechselspannungsbrücke können in der elektrischen Messtechnik die Kapazitätswerte von Kondensatoren und die Induktivitätswerte von Spulen gemessen werden. Darüber hinaus werden Wechselspannungsbrücken zu verschiedenen anderen Aufgaben… …   Deutsch Wikipedia

  • Wheatstone'sche Messbrücke — Die Wheatstonesche Messbrücke (kurz: Wheatstone Brücke) ist eine Messeinrichtung zur Messung von elektrischen Widerständen ohmscher Art (Gleichstromwiderstand), kleinen ohmschen Widerstandsänderungen. Grundaufbau der Wheatstone Brücke Sie ist… …   Deutsch Wikipedia

  • Wheatstone-Brücke — Die Wheatstonesche Messbrücke (kurz: Wheatstone Brücke) ist eine Messeinrichtung zur Messung von elektrischen Widerständen ohmscher Art (Gleichstromwiderstand), kleinen ohmschen Widerstandsänderungen. Grundaufbau der Wheatstone Brücke Sie ist… …   Deutsch Wikipedia

  • Wheatstonebrücke — Die Wheatstonesche Messbrücke (kurz: Wheatstone Brücke) ist eine Messeinrichtung zur Messung von elektrischen Widerständen ohmscher Art (Gleichstromwiderstand), kleinen ohmschen Widerstandsänderungen. Grundaufbau der Wheatstone Brücke Sie ist… …   Deutsch Wikipedia

  • Wheatstonesche Brücke — Die Wheatstonesche Messbrücke (kurz: Wheatstone Brücke) ist eine Messeinrichtung zur Messung von elektrischen Widerständen ohmscher Art (Gleichstromwiderstand), kleinen ohmschen Widerstandsänderungen. Grundaufbau der Wheatstone Brücke Sie ist… …   Deutsch Wikipedia

  • Wheatstonsche Brücke — Die Wheatstonesche Messbrücke (kurz: Wheatstone Brücke) ist eine Messeinrichtung zur Messung von elektrischen Widerständen ohmscher Art (Gleichstromwiderstand), kleinen ohmschen Widerstandsänderungen. Grundaufbau der Wheatstone Brücke Sie ist… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”