Effektivwert

Effektivwert

Unter dem Effektivwert (englisch: Abkürzung RMS für Root Mean Square) versteht man in der Elektrotechnik den quadratischen Mittelwert einer zeitlich veränderlichen physikalischen Größe. Vorzugsweise wird der Begriff auf Wechselgrößen (Wechselstrom, Wechselspannung) angewandt, allgemein auf Größen mit stationärem Verlauf. Der Effektivwert gibt denjenigen Wert einer Gleichgröße (Gleichstrom, Gleichspannung) an, die an einem ohmschen Verbraucher in einer repräsentativen Zeit dieselbe elektrische Energie, also auch im zeitlichen Mittel dieselbe elektrische Leistung, umsetzt. Der Effektivwert hängt sowohl vom Scheitelwert als auch von der Kurvenform ab.

Eine sinusförmige Wechselspannung.
1 = Scheitelwert,
2 = Spitze-Tal-Wert,
3 = Effektivwert,
4 = Periodendauer

Inhaltsverzeichnis

Allgemeines

Eine häufige Verwendung eines Effektivwertes findet man bei der Wechselspannung, die man aus dem Stromnetz bzw. der Steckdose beziehen kann. Diese sinusförmige Spannung hat in Mitteleuropa den Nennwert von 230 V bei einer Frequenz von 50 Hz. Dieser Nennwert gibt den Effektivwert an; die Amplitude beträgt 325 V. Die momentane Leistung schwankt zwischen null und dem Doppelten der mittleren Leistung.

Der aufgenommene Strom von Geräten ist abweichend von der Spannung oft nicht sinusförmig, verursacht durch nichtlineare Bauelemente wie Dioden oder durch elektronische Baugruppen wie Schaltnetzteile. Die Erwärmung in Verlustwiderständen ergibt sich aus dem Effektivwert der Stromstärke, daher muss man zur Dimensionierung von Leiterquerschnitten den Strom in Form seines maximalen Effektivwertes berücksichtigen.

An ohmschen Verbrauchern lassen sich mit Hilfe der Effektivwerte von Stromstärke oder Spannung viele Formeln der Gleichstromtechnik auch für die Wechselstromtechnik verwenden.

Darstellung der Definition

Gemäß der Definition oben ist der Effektivwert einer zeitlich veränderlichen Größe so groß wie die entsprechende Gleichgröße, die in einem ohmschen Widerstand im zeitlichen Mittel dieselbe Leistung (Wärme pro Zeit) erzeugt.

Bei der Schreibweise mit reellwertigen Größen gilt für die Leistung P als Mittelwert über die Augenblickswerte p(t) der Leistung

P =\overline {p(t)} =\frac1T \int\limits_{t_0}^{t_0+T}u(t) \cdot i(t)\,\mathrm dt

Dabei sind u (t) und i (t) die Augenblickswerte von Spannung und Strom. Die Größe T ist bei periodischen Vorgängen die Periodendauer oder bei statistischen Vorgängen eine hinreichend lange Zeit (mathematisch streng:   lim T → ∞). Der Anfangszeitpunkt t0 geht bei periodischen Vorgängen nicht in das Ergebnis ein; er kann nach Zweckmäßigkeit für die Rechnung gewählt werden und wird oft auf null gesetzt.

Mit der dieselbe Leistung erzeugenden Gleichspannung U_ , dem zugehörigen Gleichstrom I_ , dem ohmschen Gesetz  U_- =R\cdot I_- bzw. u(t) =R\cdot i(t) wird

P =U_- \cdot I_-=\frac{(U_-)^2}R = \frac1T \int\limits_{t_0}^{t_0+T}{\frac1R \,u^2(t)}\mathrm dt

und nach Kürzung und Radizierung

U_{\mathrm{eff}} =U_- =\sqrt{\frac1T \int\limits_{t_0}^{t_0+T}u^2(t)\mathrm dt} =\sqrt{\;\overline {u^2(t)}\;}

Die letzte Schreibweise verdeutlicht die Merkregel, die in der englischen Bezeichnung „root mean square“ steckt: Wurzel aus dem Mittelwert des Quadrats.

Entsprechende Gleichungen gelten für den Effektivwert der Stromstärke und verallgemeinernd bei jedem anderen periodischen oder statistischen Signal.

Lässt sich der Verlauf des Signals u (t) nicht als Funktion angeben, kann man zur Berechnung des Effektivwertes ein Näherungsverfahren mit abgetasteten Augenblickswerten anwenden. Mit in der Zeit T erfassten n Werten, so dass T=\sum_{i=1}^n \Delta t_i wird, erhält man

U_\mathrm{eff} \approx \sqrt{\frac1T\sum_{i=1}^n x_i^2 \Delta t_i} = \sqrt{\frac1T\left(x_1^2 \Delta t_1 + x_2^2 \Delta t_2 + x_3^2 \Delta t_3 \cdots  + x_n^2 \Delta t_n\right)}

wobei x_i\!\, Abtast- bzw. Momentanwerte sind, die in den Abständen \!\,\Delta t_i während einer Periode T\!\, abgelesen werden.

Bei konstanten Abständen \!\,\Delta t vereinfacht sich das zu T=n\cdot \Delta t und

U_\mathrm{eff} \approx \sqrt{\frac1n \sum_{i=1}^n x_i^2} = \sqrt{\frac1n \left(x_1^2 + x_2^2 + x_3^2  \cdots  + x_n^2\right)}

Spezielle Signalformen

Bei einem linearen bzw. ohmschen Verbraucher stellt sich aufgrund der Spannung ein Strom ein, der denselben zeitlichen Verlauf in Form und Frequenz und keine zeitliche Verschiebung aufweist.

Sinusförmige Spannung

links Sinusgröße; rechts quadrierte Sinusgröße mit zugehörigem Mittelwert (gestrichelt)

Nach den Additionstheoremen gilt

\sin^2 x = \frac12 \;(1 - \cos (2x))

Dieses wird veranschaulicht durch einen Gleichanteil mit der Höhe ½ und einem Wechselanteil mit der Amplitude ½ bei doppelter Frequenz. Bei der Mittelwertbildung fällt der Wechselanteil heraus. Der Mittelwert über

u^2(t)= \hat u^2 \sin^2(\omega t)

ergibt sich damit anschaulich zu

\overline{u^2(t)} =\hat u^2\ \overline{\sin^2(\omega t)} =\hat u^2 \cdot \frac 12

Um zum Effektivwert zu kommen, braucht man daraus nur noch die Wurzel zu ziehen.

Die rechnerische Herleitung verwendet

{\int \sin^2 (\omega t)\;\mathrm dt = \frac t2 - \frac 1{4\omega} \sin(2\omega t)} +\text{const}

woraus

\int\limits_0^T \sin^2 (\omega t)\;\mathrm dt =\frac T2

folgt. Eingesetzt in die definierende Gleichung liefert das

U_{\mathrm{eff}} =\frac 1{\sqrt 2}\;\hat u

Umgekehrt ist bei Sinusform

\hat u =\sqrt 2\ U_{\mathrm{eff}}

also bei Netzspannung û = √2 · 230 V = 325 V.

Pulsdauermodulierte Gleichspannung

Periodisch ein-/ausgeschaltete Größe

Soll die Stromentnahme aus einer Spannungsquelle gedrosselt werden, so ist eine bewährte Methode dazu die Pulsdauermodulation, da die Schaltvorgänge nahezu verlustfrei ablaufen. Wird während einer festen Periodendauer T die Spannung nur für einen Teil der Periode τ eingeschaltet, so vermindert sich der mittlere Strom I_ gegenüber dem in der Einschaltphase fließenden Strom I0 proportional zum Tastgrad τ/T auf

I_-=I_0 \cdot(\tau/T)

Der Effektivwert ergibt sich dabei zu

I_{\text{eff}} = \sqrt{\frac 1T\ (I_0)^2\cdot \tau} =\vert I_0\vert \cdot \sqrt {\tau/T}

Die Tatsache, dass I_{\text{eff}} >\vert I_-\vert ist, sollte man bei der Erwärmung von Verlustwiderständen (beispielsweise dem Innenwiderstand der Spannungsquelle) tunlichst bedenken.– Zur Messung dieses gepulsten Stromes ist zu beachten, dass es sich um eine Mischgröße handelt; siehe dazu weiter unten.

Weitere Signalformen

Für Dreieck- und Rechtecksignale siehe Tabelle bei Scheitelfaktor.

Messtechnische Erfassung

Gleichrichtwert und Effektivwert

Spannungsmessgeräte für Wechselspannungen wurden ursprünglich für die Anzeige des Effektivwertes sinusförmiger Spannungen ausgelegt, indem sie den Gleichrichtwert (Mittelwert des Betrages) der Spannung erfassen und den Formfaktor für Sinus-Spannungen durch entsprechende Justierung der Spannungsteiler in die Anzeige einbeziehen. Da der Formfaktor für jede Kurvenform ein anderer ist (siehe Tabelle bei Scheitelfaktor oder Beispiele bei Gleichrichtwert), ist die Anzeige des Effektivwertes durch solche Messgeräte nur für sinusförmige Spannungen richtig. Da in der Elektrotechnik bzw. Elektronik die Spannungsverläufe häufig stark vom Sinusverlauf abweichen, können hiermit erheblich fehlerhafte Messwerte entstehen.

Für Messgeräte, die den Effektivwert tatsächlich gemäß seiner Definition bestimmen, wird zur Verdeutlichung gelegentlich werbewirksam behauptet, dass sie den „echten Effektivwert“ (englisch TRMS, T für true) messen; ein Effektivwert kann aber nicht echt oder unecht oder true sein.

Der am häufigsten eingesetzte Vertreter unter den effektivwert-bildenden elektromechanischen Messgeräten ist das Dreheisenmessgerät. Es ist allerdings nur für einen begrenzten niedrigen Frequenzbereich geeignet.

Eine andere Lösung ist es, mit dem Messstrom einen Widerstand zu erwärmen und dessen Temperatur zu messen. Durch Vergleich mit einem Gleichstrom kann diese Messanordnung auf den Effektivwert kalibriert werden. Mit dieser Messmethode kann auch noch bei sehr hohen Frequenzen richtig gemessen werden.

Effektivwertbildung mit elektrischem Ausgangssignal

Es gibt mehrere elektronische Schaltungen zur Effektivwertbildung. Eine davon hat sich besonders bewährt und wird von mehreren Herstellern als integrierte Schaltung angeboten. [1] Das Eingangssignal Ue oder Ie darf Gleich- und Wechselanteile enthalten. Der Ausgangsstrom Ia ist proportional zum Effektivwert des Eingangssignals, wobei sich die dazu notwendige Mittelwertbildung aus dem durch R2 und C2 gebildeten Tiefpass ergibt. Die Schaltung arbeitet folgendermaßen (siehe Bild):

Schaltung zur Effektivwertbildung

In der Eingangsstufe wird ein Strom I1 erzeugt mit \!\,I_1\sim |U_e| . Der kombinierte Quadrierer und Dividierer erzeugt ein I_2=I_1^2/I_3 . Dieses Zwischenergebnis wird geglättet und steuert als \overline{I_2} mittels Stromspiegelung zwei Stromquellen. Die eine führt das Signal I_3= \overline{I_2} auf den Dividiereingang zurück; die andere liefert das Ausgangssignal I_a=\overline{I_2} . Damit ergibt sich folgende Rechnung:

I_2 = I_1^2/I_3 = I_1^2/\overline{I_2} \,
\overline{I_2} = \overline{I_1^2/\overline{I_2}} = \overline{I_1^2}/ \overline{I_2}
\left( \overline{I_2}\right )^2 = \overline{I_1^2}
I_a = \overline{I_2} = \sqrt{\overline{I_1^2}}\sim U_{e,\text{ eff}}

Mischgrößen

Der Effektivwert Ueff einer Mischgröße ist größer als ihr Gleichanteil U_ und als der Effektivwert ihres Wechselanteils U~ , egal ob der Gleichanteil überwiegt (links) oder der Scheitelwert û~ ihres Wechselanteils (rechts)

Eine Mischspannung ist eine Überlagerung aus einer Gleichspannung U_ und einer Wechselspannung u~

\!\,u_\text{ Misch}=U_- +u_\sim

Der Effektivwert der Mischspannung ergibt sich zu

U_\text{eff}=\sqrt {(U_-)^2+(U_\sim)^2}

Dabei ist U~ der Effektivwert des Wechselanteils. Bei den effektivwert-bildenden Spannungsmessgeräten gibt es Ausführungen, die den Effektivwert der Gesamtspannung (AC+DC) oder des Wechselanteils alleine (AC) erfassen. Manche Multimeter sind auch umschaltbar.

Wer den Gleichanteil alleine messen will, darf ein effektivwert-bildendes Messgerät überhaupt nicht verwenden.
Wer den Wechselanteil alleine messen will, muss ein Messgerät verwenden, das den Gleichanteil durch Kondensator oder Transformator abtrennt.

Entsprechendes gilt für den Mischstrom und für effektivwert-bildende Strommessgeräte.

Quellen

  1. [1] „True RMS-to-DC Converter“

Wikimedia Foundation.

Игры ⚽ Поможем решить контрольную работу

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Effektivwert — Quadratmittel * * * Ef|fek|tiv|wert 〈m. 1〉 quadratischer Mittelwert einer Wechselstromgröße od. der Wert der Gleichstromgröße gleicher Wirkung * * * Effektivwert,   1) Physik: bei einer zeitlich periodisch veränderlichen Größe G (t) (Period …   Universal-Lexikon

  • Effektivwert — vidutinė kvadratinė vertė statusas T sritis automatika atitikmenys: angl. root mean square value vok. Effektivwert, m; quadratischer Mittelwert, m rus. среднеквадратичное значение, n pranc. valeur moyenne quadratique, f …   Automatikos terminų žodynas

  • Effektivwert — efektinė vertė statusas T sritis Standartizacija ir metrologija apibrėžtis Kintamojo dydžio vertė, lygi jo amplitudinei vertei, padalytai iš 1,41. atitikmenys: angl. effective value vok. Effektivwert, m rus. действующее значение, n; эффективное… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • Effektivwert — efektinė vertė statusas T sritis fizika atitikmenys: angl. effective value vok. Effektivwert, m rus. действующее значение, n; эффективное значение, n pranc. valeur effective, f; valeur réelle, f …   Fizikos terminų žodynas

  • Effektivwert-Messumformer — efektinės vertės keitlys statusas T sritis Standartizacija ir metrologija apibrėžtis Keitlys, specialiai sukurtas efektinei tam tikro pavidalo virpamojo įėjimo dydžio vertei matuoti. atitikmenys: angl. rms sensing transducer vok. Effektivwert… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • Effektivwert — Ef|fek|tiv|wert 〈m.; Gen.: (e)s, Pl.: e〉 quadratischer Mittelwert einer sich zeitlich ändernden Wechselstromgröße …   Lexikalische Deutsches Wörterbuch

  • Effektivwert — der tatsächlich zu erzielende Preis, v.a. für ⇡ Effekten (i.Allg. Börsenkurs abzüglich Spesen). Anders: ⇡ Kurswert …   Lexikon der Economics

  • Effektivwert — Ef|fek|tiv|wert der; [e]s, e: der tatsächlich wirkende Durchschnittswert des von null bis zum Maximalwert (Scheitelwert) dauernd wechselnden Stromwertes (bes. bei Wechselstrom; Elektrot.) …   Das große Fremdwörterbuch

  • Quadratmittel — Effektivwert …   Universal-Lexikon

  • Echteffektivwert — Unter dem Effektivwert (Abk: RMS englisch: root mean square) versteht man in der Elektrotechnik den quadratischen Mittelwert eines zeitlich veränderlichen Signals. Intention bei der Einführung des Begriffes ist es, den Wert derjenigen… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”