Binomische Gleichung

Binomische Gleichung

Die Binomischen Formeln sind in der elementaren Algebra verbreitete Formeln zur Darstellung und zum Lösen von Quadrat-Binomen. Sie werden als Merkformeln verwendet, die zum einen das Ausmultiplizieren von Klammerausdrücken erleichtern, zum anderen erlauben sie die Term-Umformung von bestimmten Summen und Differenzen in Produkte (die Faktorisierung), was bei der Vereinfachung von Bruchtermen, beim Radizieren von Wurzeltermen sowie Logarithmenausdrücken sehr oft die einzige Lösungsstrategie darstellt.

Die Formeln gelten in allen kommutativen Ringen.

Die Bezeichnung binomisch deutet nicht auf einen Mathematiker hin, sondern erklärt sich aus der Bedeutung von bi (zwei) und Nomen (Namen) (vgl. Binom). Gleichwohl tauchen die fiktiven Alessandro Binomi und Francesco Binomi in einigen Schul- und Lehrbüchern scherzhafterweise als deren Urheber auf.

Inhaltsverzeichnis

Formeln

Allgemein:

(a + b)^n = \sum_{k=0}^{n} \binom n k a^{n-k} \cdot b^k , n \in \mathbb{N}

Dabei bezeichnet der Klammerausdruck den Binomialkoeffizienten.

Speziell:

(a+b)^2 = a^2 + 2 \cdot a \cdot b + b^2 erste Binomische Formel (Plus-Formel)
(a-b)^2 = a^2 - 2 \cdot a \cdot b + b^2 zweite Binomische Formel (Minus-Formel)
(a+b) \cdot (a-b) = a^2 - b^2 dritte Binomische Formel (Plus-Minus-Formel)

Die Gültigkeit der Formeln ist durch Ausmultiplizieren einzusehen:

(a+b)^2=(a+b)\cdot(a+b)=a \cdot a+a \cdot b+b \cdot a+b \cdot b=a^2+2 \cdot a \cdot b+b^2
(a-b)^2=(a-b) \cdot (a-b)=a \cdot a-a \cdot b-b \cdot a+b \cdot b=a^2-2 \cdot a \cdot b+b^2
(a+b) \cdot (a-b)=a \cdot a-a \cdot b+b \cdot a-b \cdot b=a^2-b^2

Diese Formeln, häufig in der Mathematik benutzt, bieten auch eine Hilfe beim Kopfrechnen. Das Quadrat einer beliebigen Zahl zwischen 10 und 100 lässt sich oft einfach mit der binomischen Formel bestimmen, indem man die Berechnung auf Quadrate von einfacheren Zahlen (Vielfache von 10 oder einstellige Zahlen) zurückführt. Beispielsweise ist

 37^2 = (30+7)^2 = 30^2 + 2 \cdot 30 \cdot 7 + 7^2 = 1369

Bei Kenntnis der Quadratzahlen bis 20 lassen sich auch viele Multiplikationen auf die dritte binomische Formel zurückführen. Beispielsweise ist

 17 \cdot 13 = (15+2) \cdot (15-2) = 15^2 - 2^2 =225 - 4 = 221

Binomische Formeln lassen sich auch für höhere Potenzen angeben, diese Verallgemeinerung ist der binomische Lehrsatz. Man benutzt dazu die Binomialkoeffizienten, die mittels des Pascalschen Dreiecks leicht zu bestimmen sind.

Auch zur dritten Binomischen Formel gibt es eine Verallgemeinerung, die einem die Faktorisierung von an - bn ermöglicht:

a^3 - b^3=(a-b) \cdot (a^2 + ab + b^2)
a^4 - b^4=(a-b) \cdot (a^3 + a^2 b + a b^2 + b^3)

oder allgemein für höhere Potenzen

\begin{align}
a^n - b^n&=(a-b) \cdot (a^{n-1} + a^{n-2} b + a^{n-3} b^2 + \cdots + a^2 b^{n-3} + a b^{n-2} + b^{n-1})\\
 &= (a-b) \sum_{k=0}^{n-1}a^{k} b^{n-1-k}
\end{align}

Eine Faktorisierung von an + bn ist ebenfalls möglich, wenn n ungerade ist, z. B.:

a^3 + b^3=(a+b) \cdot (a^2 - ab + b^2)
a^5 + b^5=(a+b) \cdot (a^4 - a^3b + a^2b^2 - ab^3 + b^4)

Für gerade n ist eine Faktorisierung von an + bn über die komplexen Zahlen möglich, z. B.:

a^2 + b^2=(a+ib) \cdot (a - ib) ,

oder, falls n auch ungerade Faktoren enthält, eine Faktorisierung in Faktoren höherer Ordnung, z. B.:

a^6 + b^6=(a^2+b^2) \cdot (a^4 - a^2b^2 + b^4) .

Anwendung der allgemeinen Formel

 (a + b)^n = \sum_{k=0}^{n} \binom n k a^{n-k} \cdot b^k
\sum_{k=0}^n = Summenzeichen , \binom n k = \frac{n!}{k! \cdot (n-k)!} = Binomialkoeffizient

Beispiel n = 3 und b ist negativ / positiv:

(a \pm b)^3 = (a + (\pm b))^3 = \sum_{k=0}^{3} \binom 3 k a^{3-k} \cdot (\pm b)^k
(a \pm b)^3 =  \binom 3 0 a^{3-0} \cdot (\pm b)^0 + \binom 3 1 a^{3-1} \cdot (\pm b)^1 + \binom 3 2 a^{3-2} \cdot (\pm b)^2 + \binom 3 3 a^{3-3} \cdot (\pm b)^3
(a \pm b)^3 =\binom 3 0  a^3 \pm  \binom 3 1 a^{2} \cdot b + \binom 3 2 a \cdot b^2 \pm \binom 3 3 \cdot b^3
(a \pm b)^3 =\left(\frac{3!}{0! \cdot 3!} \right)a^3 \pm  \left(\frac{3!}{1! \cdot 2!} \right)  a^{2} \cdot b + \left(\frac{3!}{2! \cdot 1!} \right)  a \cdot b^2 \pm \left(\frac{3!}{3! \cdot 0!} \right) \cdot b^3
(a \pm b)^3 =a^3 \pm  3 a^{2} b + 3 a b^2 \pm b^3

Diese Formel lässt sich auch für negative Exponenten anwenden

 (a \pm b)^{(-3)} = (a \pm b)^{(3)\cdot(-1)}=(a^3 \pm  3 a^{2} b + 3 a b^2 \pm b^3 )^{(-1)}=\frac{1}{a^3 \pm  3 a^{2} b + 3 a b^2 \pm b^3}

bzw. für gebrochene Exponenten

 (a \pm b)^{(\frac{3}{4})} =\sqrt[4]{(a \pm b)^{3}}=\sqrt[4]{(a^3 \pm  3 a^{2} b + 3 a b^2 \pm b^3 )}

Veranschaulichung

Veranschaulichung der 1. Binomischen Formel mit einem Quadrat der Seitenlänge a+b Nebenstehendes mehrfarbiges Quadrat hat die Seitenlänge (a+b). Wie sofort ersichtlich ist, passen zwei kleinere Quadrate und hinein, und es bleiben zwei Rechtecke mit der gleichen Fläche a·b übrig.

Dadurch ergibt sich (a+b)^2=a^2+b^2+2\cdot a\cdot b

Veranschaulichung der 2. Binomischen Formel mit einem Quadrat der Seitenlänge a-b Im zweiten Bild ist das blau umrahmte Quadrat. Soll daraus ein Quadrat der Seitenlänge (a-b) erzeugt werden, wird zuerst die rot umrahmte Fläche a·b abgezogen. Eine ebenso große liegende Fläche kann erst abgezogen werden, wenn zuvor das kleine Quadrat addiert wird.

Die hier gezeigte Formel lautet also (a-b)^2=a^2-2\cdot a\cdot b+b^2

Veranschaulichung der 1. Binomischen Formel mit Rechtecken der Seitenlängen a+b und a-b Im dritten Bild ist das hell- und dunkelblaue Quadrat. Wird das kleine Quadrat davon abgezogen und das verbleibende helle Rechteck gedreht unten angehängt, so entsteht ein Rechteck der Breite (a-b) und der Höhe (a+b).

Also ergibt sich die Formel a^2-b^2=(a+b)\cdot (a-b)

Eine weitere Veranschaulichung der dritten Binomischen Formel erhält man durch folgende Zerlegung:

Veranschaulichung der 3. Binomischen Formel

Bedeutung

Mit Hilfe der Binomischen Formeln lassen sich Multiplikation und Division auf die einfacheren Rechenarten Quadrieren, Addieren, Subtrahieren, Halbieren und Verdoppeln zurückführen:

Die erste und zweite Binomische Formel liefern für das Produkt zweier Zahlen a und b:

a \cdot b = ((a+b)^2 - a^2 - b^2) / 2 = (b^2 + a^2 -(a-b)^2) / 2

Wer an Stelle des Einmaleins die ersten hundert Quadratzahlen kennt, kann so das allgemeine Produkt zweier Zahlen leicht berechnen. In Ermangelung eines Ziffernsystems mit Null haben nachweislich die Babylonier so gerechnet und in der ganzen Antike und im Mittelalter wird man so gerechnet haben. Die angebliche Umständlichkeit der antiken Zahlsysteme wird damit relativiert, da man mit diesen Zahlsystemen sehr gut addieren und subtrahieren konnte.

Die dritte Binomische Formel ist nicht nur ein Kopfrechenkniff, sondern liefert auch ein Verfahren, die Division auf die Multiplikation und eine einfachere Division zurückzuführen. Durch Erweiterung eines Nenners a+b mit dem so genannten konjugierten a-b wird die Division durch algebraische Zahlen auf die Division von rationalen Zahlen zurückgeführt und die Division von komplexen (und hyperkomplexen) Zahlen auf die Division durch reelle Zahlen.

Siehe auch

Weblinks


Wikimedia Foundation.

Игры ⚽ Нужно сделать НИР?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Gleichung — In der Mathematik ist eine Gleichung eine Aussage, in der die Gleichheit zweier Terme durch mathematische Symbole ausgedrückt wird. Dies wird durch das Gleichheitszeichen („=“) symbolisiert. Formal hat eine Gleichung die Gestalt T1 = T2 mit zwei… …   Deutsch Wikipedia

  • Allgemeine binomische Formel — Der binomische Lehrsatz ist ein Satz der Mathematik, der es in seiner einfachsten Form ermöglicht, die Potenzen eines Binoms x+y, also einen Ausdruck der Form als Polynom n ten Grades in den Variablen x und y auszudrücken. Dieser Satz zählt in… …   Deutsch Wikipedia

  • Nichtlineare Gleichung — Dieser Artikel befasst sich mit mathematischen Gleichungen; Zu chemischen Reaktionsgleichungen siehe ebenda; Zu Gleichungen aus der Volkswirtschaft siehe Gleichung (Volkswirtschaft). In der Mathematik ist eine Gleichung eine Aussage, in der die… …   Deutsch Wikipedia

  • quadratische Gleichung — quadratische Gleichung,   Gleichung zweiten Grades der Form ax2 + 2bx + c = 0 mit a ≠ 0. Dividiert man die Gleichung durch a, dann erhält man die quadratische Gleichung in der Normalform x2 + px + q = 0. Die …   Universal-Lexikon

  • Binomialentwicklung — Der binomische Lehrsatz ist ein Satz der Mathematik, der es in seiner einfachsten Form ermöglicht, die Potenzen eines Binoms x+y, also einen Ausdruck der Form als Polynom n ten Grades in den Variablen x und y auszudrücken. Dieser Satz zählt in… …   Deutsch Wikipedia

  • Binomialsatz — Der binomische Lehrsatz ist ein Satz der Mathematik, der es in seiner einfachsten Form ermöglicht, die Potenzen eines Binoms x+y, also einen Ausdruck der Form als Polynom n ten Grades in den Variablen x und y auszudrücken. Dieser Satz zählt in… …   Deutsch Wikipedia

  • Binomischer Satz — Der binomische Lehrsatz ist ein Satz der Mathematik, der es in seiner einfachsten Form ermöglicht, die Potenzen eines Binoms x+y, also einen Ausdruck der Form als Polynom n ten Grades in den Variablen x und y auszudrücken. Dieser Satz zählt in… …   Deutsch Wikipedia

  • Binomischer Lehrsatz — Der binomische Lehrsatz ist ein Satz der Mathematik, der es in seiner einfachsten Form ermöglicht, die Potenzen eines Binoms x+y, also einen Ausdruck der Form als Polynom n ten Grades in den Variablen x und y auszudrücken. In der Algebra gibt der …   Deutsch Wikipedia

  • Hamilton-Zahl — Gedenktafel an der Broom Bridge in Dublin, wo William Rowan Hamilton die Multiplikationsregeln im Oktober 1843 spontan in den Stein ritzte. Die Quaternionen (von lat. quaternio „Vierheit“) sind eine Erweiterung der reellen Zahlen, ähnlich den… …   Deutsch Wikipedia

  • Hamilton-Zahlen — Gedenktafel an der Broom Bridge in Dublin, wo William Rowan Hamilton die Multiplikationsregeln im Oktober 1843 spontan in den Stein ritzte. Die Quaternionen (von lat. quaternio „Vierheit“) sind eine Erweiterung der reellen Zahlen, ähnlich den… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”