- Emanuel Sperner
-
Emanuel Sperner (* 9. Dezember 1905 in Waltdorf bei Neisse, Oberschlesien; † 31. Januar 1980 in Laufen, Markgräflerland) war ein deutscher Mathematiker, der für zwei nach ihm benannte Sätze bekannt ist.
Inhaltsverzeichnis
Leben
Er studierte zunächst an der Albert-Ludwigs-Universität Freiburg, später an der Universität Hamburg. Dort wurde er bei Otto Schreier promoviert und dort habilitierte er sich auch. Seine Dissertation vom 5. November 1928 trägt den Titel „Neuer Beweis für die Invarianz der Dimensionszahl und des Gebietes“. Von 1932 bis 1934 hatte er eine Gastprofessur in China inne; es folgten von 1934 bis 1943 eine Professur an der Universität Königsberg, von 1943 bis 1945 an der Universität Straßburg, von 1946 bis 1949 an der Albert-Ludwigs-Universität Freiburg, von 1949 bis 1954 an der Universität Bonn und von 1954 bis 1974 an der Universität Hamburg.
Er hielt weitere Gastprofessuren inne und war beim Aufbau des Mathematischen Forschungsinstituts Oberwolfach beteiligt. 1957 war er Präsident der Deutschen Mathematiker-Vereinigung.
Zu seinen Doktoranden zählt Gerhard Ringel.
Sätze
Zwei Resultate von Sperner sind besonders zu erwähnen. Beide Resultate werden manchmal - vor allem in der älteren Literatur - unter dem selben Namen als das Spernersche Lemma (engl. Sperner's lemma) angegeben.
Der Satz von Sperner
Dieser Satz besagt, dass eine jede Antikette der Potenzmenge 2X einer n-elementigen Menge X höchstens M Elemente umfasst, wenn M gleich dem größten Binomialkoeffizienten der Ordnung n ist.
Das Spernersche Lemma
Dieses Lemma, wie der Satz von Sperner veröffentlicht im Jahr 1928, sagt aus, dass jede Sperner-Färbung[1] der Triangulierung eines n-dimensionalen Simplex mindestens eine Zelle enthält, die mit allen Farben gefärbt ist. Sperner bewies, dass dieses Lemma einen weiteren Beweis eines Satzes von Lebesgue liefert, mit dem die Dimension eines euklidischen Raums charakterisiert wird. Später wurde festgestellt, dass dieses Lemma auch einen direkten Beweis des Brouwerschen Fixpunktsatzes liefert, der ohne eine explizite Verwendung von Homologien auskommt. (Siehe Harzheim 1978.)
Weitere Leistungen
Aus Sperners späteren Zeit ist noch seine Behandlung der geordneten Geometrie mit Hilfe der von ihm eingeführten Ordnungsfunktionen hervorzuheben.
Weiter gab er nach Otto Schreiers frühem Tod dessen Vorlesungen über Analytische Geometrie und Algebra heraus, die jahrzehntelang als grundlegendes Lehrbuch für die mathematischen Anfängervorlesungen in Linearer Algebra dienten.
Ausgewählte Arbeiten (aus insgesamt 36) von E. Sperner
- Neuer Beweis für die Invarianz der Dimensionszahl und des Gebietes. Abh. Math. Sem. Hamburg VI (1928) 265–272.
- Ein Satz über Untermengen einer endlichen Menge. Math. Z. 27 (1928) 544–548.
- Über die fixpunktfreien Abbildungen der Ebene. Abh. math. Se,. Hamburg X (1934) 1–48.
- Zur Begründung der Geometrie im begrenzten Ebenenstück. Schriften der Königsberger Gelehrten Gesellschaft, Math.-Naturw. Klasse, (Halle a. d. Saale 1938) 121–143.
- Die Ordnungsfunktionen einer Geometrie. Math. Annalen 121 (1949) 107–130.
- Beziehungen zwischen geometrischer und algebraischer Anordnung. Sitzungsber. Heidelberger Akad. d. Wiss. 1949, 10. Abh., 3–38.
- Konvexität bei Ordnungsfunktionen. Abh. Math. Sem. Hamburg XVI (1949), 140-154.
- Ein gruppenntheoretischer Beweis des Satzes von Desargues in der absoluten Axiomatik. Arch. d. Math. 5 (1954), 458–468.
Literatur
- W. Benz, H. Karzel, A. Kreuzer (Hrsg.): Emanuel Sperner Gesammelte Werke. Heldermann 2005, ISBN 3-88538-502-3.
- Konrad Engel: Sperner Theory. Weitere Informationen auf der Seite
- Egbert Harzheim: Einführung in die kombinatorische Topologie. Wissenschaftliche Buchgesellschaft, Darmstadt 1978, ISBN 3-534-07016-X.
Weblinks
- Literatur von und über Emanuel Sperner im Katalog der Deutschen Nationalbibliothek
- Eintrag im Mathematikerstammbaum
- Emanuel Sperner. Eintrag in Virtueller Stadtrundgang in Hamburg.
- Artikel zum Spernerschen Lemma im englischen WIKIPEDIA
Anmerkungen
- ↑ Eine Sperner-Färbung ist am Beispiel der Triangulation eines Dreiecks mit den Ecken A, B, C: 1. jeder Eckpunkt A, B, C ist verschieden gefärbt. 2. Jeder Punkt auf einer Seite des Dreiecks A, B, C ist mit einer Farbe der zugehörigen Eckpunkte gefärbt.
Wikimedia Foundation.