- 19-EDO
-
Ein Neunzehnstufiges Tonsystem organisiert die musikalischen Tonhöhen in 19 verschiedenen Stufen pro Oktavraum. Sind diese Stufen gleich groß, spricht man von der gleichmäßigen Neunzehntönigen Stimmung, in der direkt benachbarte Töne einen Höhenunterschied von ca. 63,16 Cent bzw. ein Frequenzverhältnis von
haben.
Alle temperierten neunzehntönigen Stimmungen verfügen über dieselbe spezifische Enharmonik, die sich deutlich von der bei 12-tönigen Temperierungen gewohnten unterscheidet. So klingen die z. B. Töne Fis und Ges tatsächlich verschieden hoch, und bei einem 19-stufigen Quintenzirkel könnte man die Nahtstelle beispielsweise zwischen Ais und Fes legen. Hieraus resultieren von der klassischen 12-Stufigkeit differierende Modulationswege.
Ein weiterer wesentlicher Aspekt, dass nämlich einige grundlegende Intervalle in 19-tönigen Systemen gut angenähert werden können, wurde bereits im ausgehenden 16. Jahrhundert offenbar, als man diese aus dem Bemühen um eine optimale Mitteltönige Stimmung erstmals folgerte.
Inhaltsverzeichnis
Erste Ansätze im 16. Jahrhundert
Im 16. Jahrhundert versuchten mehrere Theoretiker (mit Bezug auf die antike Musik Griechenlands, deren Tonarten sie wiederzugeben versuchten), den Kompromiss zwischen reinen Intervallen und den Verschiebungen durch zusätzliche Töne innerhalb der Oktave auszugleichen und enharmonische „Varianten“ zu den vorhandenen zwölf Tönen mit zusätzlichen Tasten (bei einer Tastatur) zu realisieren. Der Versuch, immer genauere Differenzierungen für enharmonische Tonleitern zu finden, führte zu Vorschlägen für 19-, aber auch für 24- und 36-stufige Tonleitern und Tastaturen, für die auch Instrumente gebaut wurden. 19-stufige Cembali waren im 16. Jahrhundert offenbar recht häufig. Dies ergab die Möglichkeit, mehr Intervalle relativ „rein“ erklingen zu lassen und somit mehr Tonarten „harmonisch“ klingend spielen zu können. Bei all dem gelang allerdings die mathematische Darstellung problemloser als die Stimmpraxis und der Bau entsprechender Instrumente.
Bereits 1558 erwähnte der italienische Komponist und Theoretiker Gioseffo Zarlino in seinem Werk Le istituzioni harmoniche eine Stimmung, die sich auf neunzehn Tonschritte innerhalb der Oktave bezog, ohne genau darauf einzugehen. Es handelt sich hierbei offenbar um die 1577 von dem Theoretiker Francisco de Salinas vorgeschlagene 1/3-Komma Mitteltönige Stimmung, die die damals üblichen zwölf Töne der Tonleiter - C, Cis, D, Es, E, F, Fis, G, Gis, A, B und H - um sieben weitere enharmonische Varianten - His, Des, Dis, Eis, Ges, As und Ais - ergänzt. Nach zeitgenössischem Zeugnis vermochte der blinde Salinas in dieser Temperatur sehr gewandt auf einem nach seinen Plänen konstruierten 19-stufigen Instrument zu spielen. Klaus Lang schreibt hierzu[1]
„In dieser Stimmung sind die Quinten und großen Terzen um 1/3-(syntonisches) Komma verkleinert, während die großen Sexten rein bleiben. Zarlino meint selbst, dass diese Methode nicht so gut klinge wie die beiden anderen Methoden. Eine interessante Eigenschaft dieser Temperierungsmethode ist aber, dass sich, wenn man eines, der im 16. Jahrhundert relativ weit verbreiteten Instrumente mit 19 Stufen pro Oktave mit ihrer Hilfe einstimmt, der Quintenzirkel schließen lässt, also die Wolfsquinte beseitigt wird“
Die Chanson Seigneur Dieu ta pitié des französischen Komponisten Guillaume Costeley ist für eine 19-stufiges Tonsystem komponiert; denn Costeley berichtete 1570 davon, dass er diese chromatisch-enharmonische chanson spirituell „vor gut zwölf Jahren“ („il y bien douze ans“), also etwa 1557, als Übung im Gebrauch einer 19-stufigen Tonleiter komponiert habe. Er erläuterte nebenbei auch recht detailliert, wie man 19-stufige Tasteninstrumente zu bauen habe, und dachte dabei an eine gleichstufige Teilung der Oktav.
Gleichstufige Unterteilung der Oktave seit dem 19. Jahrhundert
Im 19. Jahrhundert begann die Forschung über Alternativen zur 12-tönigen gleichstufigen Stimmung. Um „reinere“ Intervalle zu erzeugen, wurde neben 31-, 43-, 50- und 53-stufigen Einteilungen der Oktave aus pragmatischen Gründen die 19-stufige besonders untersucht, sie ist die nächstliegende. Der Theoretiker Wesley Woolhouse propagierte in seinem Essay on Musical Intervals, Harmonics, and the Temperament of the Musical Scale 1835 neben anderen ein gleichstufig gestimmtes Tonsystem, welches die Oktave (entgegen der herkömmlichen Strömung) in 19 (statt in 12) gleiche Intervalle teilt. Das bemerkenswerte daran ist, dass für große und kleine Terzen und Sexten Frequenzverhältnisse entstehen, die um einiges näher am „reinen“ Intervall sind, als die in der üblichen gleichstufigen Stimmung. Alle anderen Intervalle sind allerdings weiter von ihren reinen Äquivalenten entfernt.
Für die gleichmäßige neunzehnstufige Stimmung existieren eine ganze Reihe von Kompositionen sowohl mit klassischem Anspruch als auch im Rock- und Pop-Sektor. Die Entwicklung im Bereich elektronischer Musikinstrumente bzw. computergestützter Systeme zur Soundsynthese geben Kompositionen in diesem und anderen alternativen Stimmungen erheblichen Vorschub.
Das Tonmaterial
Die mathematische Vorschrift zur Bestimmung der Frequenz eines Tons der 19-stufigen gleichsschwebenden Stimmung lautet
- ,
wobei f(0) die Frequenz eines beliebigen Bezugston, f(i) die Frequenz des Tones, der um i 19tel-Oktav-Schritte höher liegt.
Der kleinste darstellbare Tonunterschied des Systems ist also
Wie in der zwölfstufigen gleichschwebenden Stimmung, lassen sich auch für die neunzehnstufige gleichsschwebende Stimmung Intervallgrößen als Vielfache des kleinsten darstellbaren Intervalls beschreiben. Man erhält folgende Werte für Schritt-Intervalle[2]:
Intervallname Beispiel 19-stufige Stimmung 12-stufige Stimmung Diatonischer Ganzton C−D 3 Schritte 2 Schritte Diatonischer Halbton E−F 2 Schritte 1 Schritt Chromatischer Halbton F−Fis 1 Schritt 1 Schritt Eigenschaften ausgewählter Intervalle
Die in der klassischen Musik als Konsonanzen aufgefassten Intervalle der Reinen Stimmung werden von der 19-stufigen Stimmung teilweise besser (Terzen und Sexten), teilweise weniger gut (Quarte und Quinte) wiedergegeben. Hierzu eine tabellarische Gegenüberstellung (die Differenzen werden in Cent angegeben, die jeweils „bessere“ Annäherung ist hervorgehoben):
Intervall Prime kl. Terz gr. Terz Quarte Quinte kl. Sexte gr. Sexte Oktave Diff. 19-stufig 0 0,15 -7,37 7,22 -7,22 7,37 -0,15 0 Diff. 12-stufig 0 -15,64 13,69 1,96 -1,96 -13,69 15,64 0 Die folgende Tabelle zeigt die Werte aller Intervalle, in gleichstufiger und reiner Stimmung sowie deren Abweichung voneinander in Cent:
Intervall Gleichstufig temperiertes Intervall Reines Intervall Differenz in Cent 2) Differenz in Cent der
zwölfstufigen gleichstufigen
Stimmung zum reinen Intervall 2)Prime 0 Cent 0 Cent Übermäßige Prime und verminderte Sekunde Kleine Sekunde 14,58 Cent -11,73 Cent Große Sekunde -14,44 Cent -3,91 Cent Übermäßige Sekunde und verminderte Terz Kleine Terz 0,15 Cent -15,64 Cent Große Terz -7,37 Cent 13,69 Cent Übermäßige Terz und verminderte Quarte Quarte 7,22 Cent 1,96 Cent Übermäßige Quarte 1) -21,8 Cent 9,78 Cent Verminderte Quinte Quinte -7,22 Cent -1,96 Cent Übermäßige Quinte und verminderte Sexte Kleine Sexte 7,37 Cent -13,69 Cent Große Sexte -0,15 Cent 15,64 Cent Übermäßige Sexte und verminderte Septime Kleine Septime 14,44 Cent 3,91 Cent Große Septime -14,58 Cent 11,73 Cent Übermäßige Septime und verminderte Oktave Oktave 0 Cent 0 Cent Anmerkungen:
1) Übermäßige Quarte, mitunter auch als Tritonus bezeichnet, definiert als: Große Terz (5/4) plus Große Sekunde (9/8). Das ist gleichbedeutend mit: Quinte (3/2) minus diatonischer Halbton (16/15).
2) Ist die Differenz negativ, so ist das gleichtemperierte Intervall enger als das reine.Siehe auch
Quellen und Literatur
- Quellen
- ↑ Klaus Lang, Auf Wohlklangswellen durch der Töne Meer. Temperaturen und Stimmungen zwischen 11. und 19. Jahrhundert. Beiträge zur elektronischen Musik 10, Graz 1999, S.62
- ↑ In der Musikpraxis werden Intervalle mitunter nach absoluter Größe unterschieden: alles was kleiner oder gleich der Sekunde ist, wird Schritt genannt, größere Intervalle Sprung; diese Unterscheidung wird z.B. in den Regeln des Kontrapunkts beachtet.
- Literatur
- Klaus Lang: Auf Wohlklangswellen durch der Töne Meer. Temperaturen und Stimmungen zwischen 11. und 19. Jahrhundert. Beiträge zur elektronischen Musik 10, Graz 1999 (pdf)
- Mark Lindley: Stimmung und Temperatur. In Frieder Zaminer (Hrsg.): Geschichte der Musiktheorie. Bd. 6. Hören Messen und Rechnen in der frühen Neuzeit, S. 109-332, Darmstadt 1987
Weblinks
Zum 16. Jahrhundert
- Encyklopedia of Microtonal Music Theory, daraus:
- Guillaume Costeley: Seigneur dieu ta pitié:
Zum 20. und 21. Jahrhundert
(alle Weblinks auf Englisch)
- Bucht, Saku and Huovinen, Erkki, Perceived consonance of harmonic intervals in 19-tone equal temperament (pdf)
- Darreg, Ivor, A Case for Nineteen
- Howe, Hubert S. Jr., 19-Tone Theory and Applications
- Sethares, William A., Tunings for 19 Tone Equal Tempered Guitar
Tonbeispiele
Wikimedia Foundation.