Hermitesche Funktion

Hermitesche Funktion

Die Hermiteschen Funktionen hn(x) erhält man aus den Hermiteschen Polynomen Hn(x), indem man diese mit der Dichte der Gaußschen Normalverteilung multipliziert.

h_n(x) = \frac{(-1)^n}{\sqrt{2^nn!\sqrt\pi}}e^{x^2/2}\frac{\mathrm d^n}{\mathrm dx^n}e^{-x^2},
\int_{-\infty}^{+\infty}h_n(x)h_m(x)\,\mathrm dx = \delta_{nm}\qquad\qquad n,m=0, 1, 2, \ldots

Sie sind ein sehr gutes Beispiel für die Definition (Erzeugung) einer orthonormalen Basis, ähnlich der Sinus-/Kosinusfunktionen. Während letztere in der Lage sind, mittels der Spektralanalyse (Fourieranalyse) ein periodisches Signal in ein Frequenzspektrum zu zerlegen, erlauben die Hermiteschen Funktionen die Beschreibung singulärer Ereignisse.

Eine wichtige Bedeutung haben sie in der Physik zur Konstruktion der orthonormierten Lösungsfunktionen des quantenmechanischen harmonischen Oszillators.

Singuläre Ereignisse werden in der Regel durch Intensität, Mittelwert und Standardabweichung charakterisiert. Diese Kennwerte können aber für verschiedene, sehr unterschiedliche Ereignisse identisch sein, so dass sie für die Charakterisierung nicht ausreichen. Daher bestimmt man die sogenannten „höheren statistischen Momente“ als weitere Vergleichsgrößen. Diese sind jedoch sehr empfindlich auf Rauschen und Drift der Nulllinie und daher nur bedingt geeignet. Entwickelt man eine Verteilung in Hermiteschen Funktionen, so sind die Koeffizienten sehr stabil, da die Funktionen nur im zentralen Bereich leben und somit weiter außenliegende Messdaten geeignet dämpfen.

Die Entwicklung einer ein Ereignis repräsentierenden Funktion nach Hermiteschen Funktionen hat eine gewisse Ähnlichkeit mit der Wavelet-Transformation.

Literatur


Wikimedia Foundation.

Игры ⚽ Поможем решить контрольную работу

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Hermitesche Differentialgleichung — Die hermiteschen Polynome (nach Charles Hermite) sind Polynome mit folgenden äquivalenten Darstellungen: bzw. Inhaltsverzeichnis …   Deutsch Wikipedia

  • Hermitesche Polynome — Die hermiteschen Polynome (nach Charles Hermite) sind Polynome mit folgenden äquivalenten Darstellungen: bzw. Inhaltsverzeichnis …   Deutsch Wikipedia

  • Funktion (Mathematik) — In der Mathematik ist eine Funktion oder Abbildung eine Beziehung zwischen zwei Mengen, die jedem Element der einen Menge (Funktionsargument, unabhängige Variable, x Wert) genau ein Element der anderen Menge (Funktionswert, abhängige Variable, y… …   Deutsch Wikipedia

  • Hermitesche Form — Als Hermitesche Form (nach Charles Hermite) bezeichnet man in der linearen Algebra eine Sesquilinearform mit Hermitescher Symmetrie. Das heißt: mit einem Vektorraum V über dem Körper ist eine Hermitesche Form eine Abbildung , die für alle x,y,z… …   Deutsch Wikipedia

  • Algebraische Funktion — In der Mathematik ist eine Funktion oder Abbildung eine Beziehung zwischen zwei Mengen, die jedem Element der einen Menge (Eingangsgröße, Funktionsargument, unabhängige Variable, x Wert) ein Element der anderen Menge (Ausgangsgröße, Funktionswert …   Deutsch Wikipedia

  • Mathematische Funktion — In der Mathematik ist eine Funktion oder Abbildung eine Beziehung zwischen zwei Mengen, die jedem Element der einen Menge (Eingangsgröße, Funktionsargument, unabhängige Variable, x Wert) ein Element der anderen Menge (Ausgangsgröße, Funktionswert …   Deutsch Wikipedia

  • Transzendente Funktion — In der Mathematik ist eine Funktion oder Abbildung eine Beziehung zwischen zwei Mengen, die jedem Element der einen Menge (Eingangsgröße, Funktionsargument, unabhängige Variable, x Wert) ein Element der anderen Menge (Ausgangsgröße, Funktionswert …   Deutsch Wikipedia

  • Spezielle Funktion — In der Analysis, einem Teilgebiet der Mathematik, bezeichnet man gewisse Funktionen als spezielle Funktionen, weil sie sowohl in der Mathematik selbst als auch in ihren Anwendungen (z. B. in der mathematischen Physik) eine tragende Rolle… …   Deutsch Wikipedia

  • Hermite-Funktion — Die Hermiteschen Funktionen hn(x) erhält man aus den Hermiteschen Polynomen Hn(x), indem man diese mit der Gaußschen Normalverteilung multipliziert. Sie sind ein sehr gutes Beispiel für die Definition (Erzeugung) einer orthonormalen …   Deutsch Wikipedia

  • Abbildung (Mathematik) — In der Mathematik ist eine Funktion oder Abbildung eine Beziehung zwischen zwei Mengen, die jedem Element der einen Menge (Eingangsgröße, Funktionsargument, unabhängige Variable, x Wert) ein Element der anderen Menge (Ausgangsgröße, Funktionswert …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”