Prinsreaktion

Prinsreaktion
Schema 1: Die Prins-Reaktion

Die Prins-Reaktion ist eine Reaktion der organischen Chemie, bestehend aus einer elektrophilen Addition eines Aldehyds oder Ketons an ein Alken oder Alkin, gefolgt von der Addition eines Nucleophils an das entstehende Intermediat. [1], [2], [3]. Der Ausgang der Reaktion hängt wesentlich von den Reaktionsbedingungen ab (siehe Schema 1). So ist das Reaktionsprodukt eines Alkens mit Formaldehyd in Wasser oder in Gegenwart einer Brønstedsäure ein 1,3-Diol, während unter Ausschluss protischer Lösungsmittel eine Dehydrierung zum entsprechenden Allylalkohol einsetzt. Bei einem Überschuss an Formaldehyd und niedriger Reaktionstemperatur ist das Produkt ein Dioxan, findet die Reaktion in Essigsäure als Lösungsmittel statt, wird der entsprechende Ester gebildet.

Inhaltsverzeichnis

Geschichte

Die Reaktion wurde ursprünglich von dem niederländischen Chemiker Hendrik Jacobus Prins (1889–1958) im Jahre 1919 als Reaktion von Styrol (siehe Schema 2), Pinen, Campher, Eugenol, Isosafrol und Anethol mit Formaldehyd publiziert.

Schema 2: Die Prins-Reaktion mit Styrol.

Im Jahre 1937 erlangte die Reaktion als Teil einer Synthese für Diolefine, für die Herstellung von synthetischem Gummi, Bedeutung.

Scheme 3: Isopren-Prins-Reaktion

Reaktionsmechanismus

Den Reaktionsmechanismus dieser Reaktion zeigt Schema 5. Die Carbonylverbindung (2) wird von der Säure protoniert, so dass das Oxoniumion 3 resultiert. Das Elektrophil greift in einer elektrophilen Addition das Alken an, es resultiert das Carbokation-Intermediat 4. Es existieren Hinweise, dass dieses über einen Nachbargruppeneffekt stabilisiert wird.

Schema 5: Reaktionsmechanismus der Prins-Reaktion.

Es ergeben sich dann insgesamt drei mögliche Reaktionswege für das entstehende Oxo-Carbokation-Intermediat:

  • in blau: Das Carbokation wird von Wasser oder einem anderen geeigneten Nukleophil abgefangen und reagiert über die Spezies 5 zum 1,3-Addukt 6.
  • in grün: Das Carbokation wird von einer weiteren Carbonylverbindung abgefangen. Auf diese Weise wird die positive Ladung in den mesomeren Grenzformeln 8a und 8b über Sauerstoff und Kohlenstoff delokalisiert. In einem Ringschluss entsteht über das Intermediat 9 das Dioxan 10. Ein Beispiel ist die Umwandlung von Styrol zu 4-Phenyl-m-Dioxan [4].
  • in grau: nur in sehr speziellen Fällen und nur wenn das intermediär entstehende Carbokation außerordentlich stabil ist entsteht das Oxetan 12. Die photochemisch induzierte Paterno-Büchi-Reaktion zwischen Alkenen und Aldehyden zu Oxetanen ist jedoch im Allgemeinen unkomplizierter.
  • in schwarz: Es setzt eine Eliminierungsreaktion zur ungesättigten Verbindung 7 ein. Trägt das Olefin eine Methylgruppe, kann auf die Eliminierung der Transfer eines Allylprotons und anschließend die Addition einer Carbonylgruppe folgen. Insgesamt ergibt sich so das gleiche Resultat wie bei einer Carbonyl-En-Reaktion siehe Schema 6.
Schema 6: Carbonyl-En-Reaktion versus Prins-Reaktion.

Varianten

Es existieren eine ganze Reihe von Variationen für die Prins-Reaktion, da sie zum einen zur Bildung von Ringen eingesetzt werden kann und zum anderen eine große Bandbreite an Nucleophilen zum Abfangen des intermediär gebildeten Oxo-Carbeniumions existieren.

Halo-Prins-Reaktion

Die Halo-Prins-Reaktion ist eine dieser Modifikationen: Protische Lösungsmittel oder Brønstedsäuren werden durch Lewissäuren wie Zinn(IV)-chlorid und Bortribromid ersetzt. Das Halogen stellt jetzt das mit dem Carbokation rekombinierende Nucleophil dar. Der Ringschluss des Allyl-Pulegons in Schema 7 mit Titantetrachlorid in Dichlormethan bei -78°C ist so ein möglicher diastereoselektiver Weg zur Synthese einer Decalinstruktur mit Hydroxyl- und Chloridgruppe in cis-Stellung (de = 91% cis)[5]. Ursache ist die intermediäre Entstehung des Trichlortitanalkoxids, an das die Anlagerung des Chlorids an das Carbokation vorzugsweise von der gleichen Seite erfolgt. Das trans-Diastereomer wird bevorzugt gebildet, wenn die Reaktion in Zinntetrachlorid bei Raumtemperatur erfolgt.

Scheme 7. Halo-Prins reaction

Prins-Pinakol-Reaktion

Die Prins-Pinakol-Reaktion ist eine Kaskadenreaktion, bestehend aus einer Prins-Reaktion und einer Pinakol-Umlagerung. Die Carbonylgruppe in Schema 8[6] wird als geschütztes Dimethylacetal und die Hydroxylgruppe als Triisopropylsilylether (TIPS) eingesetzt. Mit der Lewissäure Zinnchlorid wird das Oxoniumion aktiviert und die Pinakol-Umlagerung des Intermediats der Prins-Reaktion führt zu einer Verkleinerung des Ringes mit Verschiebung der positiven Ladung zum TIPS-Ether, der mit mäßiger Diastereoselektivität in eine Aldehydgruppe zerfällt.

Scheme 8. Prins-Pinakol-Reaktion

Weblinks

Quellen

  1. H. J. Prins: Condensation of formaldehyde with some unsaturated compounds. Chemisch Weekblad 1919, 16, 64, 1072, 1510.
  2. Chemical Abstracts, 1919 13, 3155.
  3. E. Arundale, L. A. Mikeska: The Olefin-Aldehyde Condensation. The Prins Reaction, Chem. Rev.; 1952; 51(3); 505-555.
  4. R. L. Shriner and Philip R. Ruby: 4-Phenyl-m-dioxane Organic Syntheses 1963, 4, 786. Artikel
  5. R. Brandon Miles, Chad E. Davis, and Robert M. Coates: Syn- and Anti-Selective Prins Cyclizations of ,-Unsaturated Ketones to 1,3-Halohydrins with Lewis Acids, J. Org. Chem. 2006, 71, 1493 - 1501.
  6. Larry E. Overman and Emile J. Velthuisen: Scope and Facial Selectivity of the Prins-Pinacol Synthesis of Attached Rings, J. Org. Chem. 2006, 71, 1581 - 1587.

Wikimedia Foundation.

Игры ⚽ Поможем написать курсовую

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”