- Viertaktmotor
-
Ein Viertaktmotor ist ein Verbrennungsmotor, der für den Kreisprozess vier Takte benötigt. Ein Takt ist beim Hubkolbenmotor die Bewegung des Kolbens vom Stillstand in eine Richtung bis zum erneuten Stillstand. Die Kurbelwelle vollführt daher während eines Taktes eine halbe Umdrehung. Vom thermodynamischen Verfahren her unterscheidet man Ottomotoren und Dieselmotoren. Beide Motoren können auch im Zweitaktverfahren arbeiten. Christian Reithmann hatte am 26. Oktober 1860 mehrere Patente auf einen Viertaktmotor erhalten. Unabhängig davon beschrieb im Jahr 1861 der Techniker Alphonse Beau de Rochas das Viertaktverfahren.
Inhaltsverzeichnis
Funktionsweise des Viertakt-Hubkolbenmotors
Folgender Ablauf beschreibt den Viertaktprozess:
1. Takt, Ansaugen
Am Beginn des 1.Taktes steht der Kolben am oberen Totpunkt. Das Auslassventil wird geschlossen und das Einlassventil geöffnet. Der Kolben bewegt sich in Richtung Kurbelwelle. Bei der Abwärtsbewegung des Kolbens wird ein Gasgemisch oder Luft durch das Einlassventil in den Zylinder gesaugt. Bei Motoren mit innerer Gemischbildung, wie Dieselmotoren oder Benzin-Direkteinspritzermotoren wird nur Luft angesaugt. Bei äußerer Gemischbildung, wie bei Vergaser-Motoren oder Motoren mit Saugrohreinspritzung, wird ein Gemisch aus Luft und dem zerstäubten Kraftstoff angesaugt. Wenn der Kolben den unteren Totpunkt erreicht, ist der erste Takt beendet. Das Einlassventil wird geschlossen.
2. Takt, Verdichten
Der Kolben bewegt sich zurück in Richtung oberer Totpunkt. Die dafür benötigte mechanische Arbeit kann aus der Schwungmasse bzw. bei Mehrzylindermotoren von einem Zylinder im Arbeitstakt über die Kurbelwelle übertragen werden. Das Gemisch oder die Luft im Zylinder wird nun auf einen Bruchteil seines ursprünglichen Volumens verdichtet. Die Höhe des Kompressionsgrades ist von der Motorbauart abhängig. Bei Ottomotoren ohne Aufladung ist ein geometrisches Verdichtungsverhältnis von über 10:1 üblich, bei Dieselmotoren ohne Aufladung über 20:1. Mit Aufladung ist es wesentlich weniger. Das Gemisch wird so beim Benziner auf etwa 450 °C und die Luft beim Diesel auf etwa 650 °C erwärmt. Kurz vor dem Erreichen des oberen Totpunktes wird beim Benziner die Zündung und beim Dieselmotor die Voreinspritzung ausgelöst. Der genaue Zeitpunkt ist abhängig von Last und Drehzahl.
3. Takt, Arbeiten
Nach dem oberen Totpunkt, beim Dieselmotor folgt noch die Haupteinspritzung, verbrennt die Gemischladung selbständig weiter. Die Höchsttemperatur im Verbrennungsraum des Ottomotors beträgt bis 2500 °C und der Spitzendruck bis zu 120 bar. Beim Dieselmotor sind es bis 2200 °C und 180 bar. Der Kolben bewegt sich in Richtung des unteren Totpunktes, das Brenngas verrichtet mechanische Arbeit am Kolben und kühlt sich dabei ab. Kurz vor dem unteren Totpunkt besteht beim Benziner noch ein Restdruck von knapp 4 bar und beim Diesel knapp 3 bar. Das Auslassventil beginnt sich zu öffnen.
4. Takt, Ausstoßen
Wenn der Kolben den unteren Totpunkt erreicht hat, wird mit der Aufwärtsbewegung des Kolbens das Abgas aus dem Zylinder geschoben. Am Ende des Ausstoßtaktes kommt es zur so genannten Ventilüberschneidung. Das Einlassventil wird geöffnet, bevor der Kolben den oberen Totpunkt erreicht und bevor das Auslassventil geschlossen hat. Das Auslassventil schließt erst kurz nachdem der Kolben den oberen Totpunkt erreicht hat.
Ventilsteuerung
Pro Zylinder gibt es mindestens ein Einlass- und ein Auslass-Ventil, aber auch 3 oder 4 Ventile pro Zylinder sind üblich, manchmal 5 (Audi) oder sogar 8 Ventile (Honda NR). 4-Ventil-Motoren erreichen, wegen des schnelleren Gasaustausches, eine höhere Drehzahl und damit mehr Leistung als Zweiventiler. So genannte 16V-Motoren sind meist 4-Zylinder-Motoren mit je 4 Ventilen pro Zylinder.
Die Ventile werden bei Serienmotoren von einer oder mehreren Nockenwellen gesteuert. Diese wird von der Kurbelwelle über Zahnriemen, Steuerkette, Stirnräder oder eine Königswelle angetrieben. Bei Hochleistungs- und Motorradmotoren wurde für den Ventiltrieb früher oft eine Königswelle verwendet (zum Beispiel Norton). Die Nockenwelle dreht sich mit halber Kurbelwellendrehzahl. Liegt die Nockenwelle unten, das heißt nicht im Zylinderkopf, werden die hängenden Ventile bei OHV-Motoren über Stoßstangen und Kipphebel betätigt, bei SV-Motoren mit stehende Ventilen (bis in die fünfziger Jahre) direkt über Stößel. Die Stoßstangen können entfallen, wenn die Nockenwelle oben liegt (OHC-Motor, overhead camshaft, aktuell die im PKW-Motorenbau am häufigsten verwendete Variante), dann werden die Ventile über Kipphebel, Tassenstößel oder Schlepphebel gesteuert. Bei zwei obenliegenden Nockenwellen (DOHC-Motor, double overhead camshaft) können die Ventile über besonders leichte Tassenstößel betätigt werden, und es ergibt sich die günstige halbkugelförmige Brennkammerform im Zylinderkopf. Mit zwei obenliegenden Nockenwellen lässt sich auf konstruktiv einfachem Weg eine variable Ventilsteuerung erreichen.
Bestimmte Sonderbauformen von Viertaktmotoren weisen keine Nockenwelle auf. Die Ventile werden direkt pneumatisch, hydraulisch oder elektrisch betätigt. Diese Art des Ventiltriebes hat sich im Serienmotorenbau noch nicht etabliert. Aber die Entwicklung einer elektromagnetischen Ventilbetätigung wird seit dem Ende der Neunziger Jahre vorangetrieben.
Ferner gibt es noch eine Sonderform der Ventilsteuerung mittels Drehschieber. Diese Bauart kommt mit wesentlich weniger bewegten Bauteilen aus als herkömmlich gesteuerte 4-Takt Motoren.[1]
Vor- und Nachteile
Vorteile und Nachteile des Viertaktmotors gegenüber dem Zweitaktmotor
Vorteile
- Der Gaswechsel erfolgt großteils durch Volumenverdrängung im vierten und ersten Takt (Ausstoßen / Ansaugen), und nur zu einem geringen Teil durch Dynamik der Gassäule während der Ventilüberschneidung. Dadurch werden Frischgas und Abgas über einen weiten Drehzahlbereich gut voneinander getrennt, was den Treibstoffverbrauch verringert und das Abgasverhalten verbessert.
- Ein geschlossener Ölkreislauf mit Druckumlaufschmierung ist Standard, dadurch ist der Schmierölverlust sehr niedrig. Nur das Öl, das zur Schmierung der Kompressionsringe dient, geht dabei prinzipbedingt verloren. Durch die Fertigungsqualität moderner Motoren tendiert dieser Schmierölverlust gegen Null. Zweitaktmotoren können zwar auch mit einer geschlossenen Druckumlaufschmierung ausgelegt sein, was jedoch meist nur in aufwendigen Großmotoren umgesetzt wird. Beim Wankelmotor muss die Laufbahnoberfläche mit Verlustöl geschmiert werden.
- Die thermische Belastung ist tendenziell geringer, da nur bei jeder zweiten Kurbelwellenumdrehung eine Verbrennung erfolgt.
Nachteile
- Eine geringere Leistungsdichte des Viertakt-Hubkolbenmotors. Grund dafür ist der Leerhub, jeder Zylinder liefert nur bei jeder zweiten Umdrehung einen Arbeitstakt und läuft eine Umdrehung als Spülpumpe. Daraus resultiert eine ungleichmäßige Abgabe des Drehmomentes. Das trifft jedoch nicht auf den Wankelmotor zu.
- Viertaktmotoren besitzen einen mechanisch aufwändigeren Aufbau als Zweitaktmotoren. Der Aufwand erklärt sich aus der Verwendung von gesteuerten Ventilen und der notwendigen Druckumlaufschmierung.
- Höhere Herstellungskosten
- Bei gleicher Leistung mehr Platzverbrauch und mehr Gewicht. Wichtig vor allem bei Zweirädern.
Bedeutung
Viertaktmotore dominieren heute im gesamten Automobil- und Motorradbau. Sogar bei Kleinkrafträdern mit 50 cm³ (z.B. Kymco Agility, Keeway), bei Rasenmähern und bei anderen Kleingeräten kommen sie vor, beispielsweise der Motor Honda GX25, bis hinab zu einer Größe von 25 cm³.
Varianten
Einige das Prinzip des Viertaktmotors variierende Formen sind technisch und wirtschaftlich von Bedeutung.
Es werden serienmässig Motore mit Varianten der Taktung produziert, siehe Miller-Kreisprozess oder Atkinson-Kreisprozess. Im Automobilbau werden gelegentlich Ausgleichwellen verwendet. Sie reduzieren die durch die auf- und abgehenden Kolben entstehenden freien Massekräfte.
Für Anwendungsbereiche, in denen leichte und lageunabhängig geschmierte Viertaktmotore von Vorteil sind, gibt es mit Zweitaktgemisch betriebene Varianten. Wie bei anderen gemischgeschmierten Motoren entfallen Öltank, Ölwanne, Ölpumpe, Ölrückhaltesysteme und Ölfilter. Durch geeignete Konstruktion, Kraftstoff und Öl läßt sich die Schadstoffemission durch Ölverbrennung unter die Grenzwerte der Abgasnorm für Viertaktmotore senken. Solche Motore werden bevorzugt als Antrieb für tragbare Motorgeräte eingesetzt (z.B. Stihl "4-Mix").
Eine besondere Bauform des Viertaktmotors ist neben dem hier beschriebenen Hubkolbenmotor der Kreiskolben-Wankelmotor, bei dem Ansaugen, Verdichten, Arbeiten und Ausstoßen während einer Kolbenumdrehung erfolgen.
Literatur
- Richard van Basshuysen; Fred Schäfer: Handbuch Verbrennungsmotor Grundlagen, Komponenten, Systeme, Perspektiven. Wiesbaden: Vieweg, 3. Auflage 2005, ISBN 3-528-23933-6
- Autorenkollektiv unter Leitung von Studienrat Dipl.Päd. ink.-Ök Folkmar Kinzer: Wissensspeicher Verbrennungsmotoren. 6. Auflage. Transpress VEB Verlag für Verkehrswesen,Berlin, 1986
Einzelnachweise
Weblinks
Wikibooks: Motoren aus technischer Sicht - Viertaktmotor – Lern- und Lehrmaterialien
Wikimedia Foundation.