- Immersierte Mannigfaltigkeit
-
Eine immersierte Mannigfaltigkeit oder immersierte Untermannigfaltigkeit ist ein Objekte aus dem mathematischen Teilgebiet der Differentialtopologie. Seltener wird dieses Objekt auch immergierte Mannigfaltigkeit[1] genannt, im Englischen spricht man meistens von einer immersed submanifold.
Hat man eine differenzierbare Abbildung
zwischen zwei Mannigfaltigkeiten, so ist das Bild f(S) im Allgemeinen keine Untermannigfaltigkeit von M. Falls die Ableitung von f jedoch injektiv ist, ist f(S) eine Mannigfaltigkeit, die aber keine (eingebettete) Untermannigfaltigkeit von M sein muss. Dieses Objekt wird immersierte Mannigfaltigkeit genannt.
Inhaltsverzeichnis
Definition
Seien S und M differenzierbaren Mannigfaltigkeiten. Dann ist eine immersierte Mannigfaltigkeit von M das Bild
der Immersion
. Die Topologie auf
muss so gewählt werden, dass ψ stetig ist. Oftmals wird noch gefordert, dass die Immersion ψ injektiv sein muss.[2]
Als Menge ist
eine Teilmenge von M, jedoch ist es im Allgemeinen keine Untermannigfaltigkeit von M. Das heißt, die Topologie von
entspricht hier auch nicht der Teilraumtopologie und insbesondere sind auch die differenzierbaren Strukturen von
und M nicht kompatibel. Ist jedoch
eine differenzierbare Einbettung, so ist
eine echte Untermannigfaltigkeit.
Unterscheidung zur Untermannigfaltigkeit
Es gibt zwei Gründe, aus denen die immersierte Mannigfaltigkeit keine Untermannigfaltigkeit sein muss:
- Die Immersion ψ ist nicht injektiv, die Immersion schneidet sich selbst. (s. Abbildung 1)
- Selbst wenn die Immersion ψ injektiv ist, kann es sein, dass die Abbildung kein Homöomorphismus ist, da das Bild offener Enden inneren Punkten von
beliebig nahe kommen kann, so dass die Topologie von
nicht mit der von S übereinstimmt. (s. Abb. 2)
Beispiel
- Die Kurve
, die durch
definiert ist, ist eine injektive Immersion. Daher ist ihr Bild eine immersierte Mannigfaltigkeit.
- Eine Lie-Gruppe ist sowohl eine algebraische Gruppe also auch eine glatte Mannigfaltigkeit, wobei die beiden Strukturen miteinander verträglich sind. Eine Lie-Untergruppe ist eine Untergruppe der Lie-Gruppe, die ebenfalls wieder die Struktur einer glatten Mannigfaltigkeit trägt, die mit der Gruppenstruktur verträglich ist. Diese Lie-Untergruppe ist im Allgemeinen keine Untermannigfaltigkeit aber eine immersierte (Unter)Mannigfaltigkeit, wobei die Immersion injektiv ist.
Literatur
- Herbert Amann, Joachim Escher: Analysis. 2. Band 2. korrigierte Auflage. Birkhäuser-Verlag, Basel u. a. 2006, ISBN 3-7643-7105-6 (Grundstudium Mathematik).
Einzelnachweise
- ↑ Stefan Hildebrandt: Analysis 2, Springer, 2003, ISBN 3540439706
- ↑ John M. Lee: Riemannian Manifolds. An Introduction to Curvature. Springer, New York 1997, ISBN 0387983228, Seite 15
Wikimedia Foundation.