James Clerk Maxwell

James Clerk Maxwell
James Clerk Maxwell
Unterschrift von James Clerk Maxwell

James Clerk Maxwell (* 13. Juni 1831 in Edinburgh; † 5. November 1879 in Cambridge) war ein schottischer Physiker. Er entwickelte einen Satz von Gleichungen (die Maxwellschen Gleichungen), welche die Grundlagen der Elektrizitätslehre und des Magnetismus bilden. Zudem entdeckte er die Geschwindigkeitsverteilung von Gasmolekülen (Maxwell-Verteilung). Er veröffentlichte die erste Farbfotografie als Nachweis für die Theorie der additiven Farbmischung.

Maxwell war der letzte Repräsentant der jüngeren Linie der bekannten schottischen Familie Clerk of Penicuik. Mit 27 heiratete er Katherine Mary Dewar. Die Ehe blieb kinderlos. Maxwell starb im Alter von 48 Jahren in Cambridge an Magenkrebs.

Inhaltsverzeichnis

Bedeutung

Maxwell wird im Allgemeinen als der Naturwissenschaftler des 19. Jahrhunderts mit dem größten Einfluss auf die Physik des 20. Jahrhunderts angesehen. Er lieferte Beiträge zu grundlegenden Naturmodellen und galt als Brückenbauer zwischen Mathematik und Physik. Bereits wenige Jahre nach seinem Tod war James Clerk Maxwells Bedeutung für die Naturwissenschaften weltweit akzeptiert, ohne dass man sich in der Würdigung damals – wie häufig später – vor allem auf seine Erforschung des Elektromagnetismus beschränkte[1][2]. 1931, zum hundertsten Jahrestag von Maxwells Geburt, beschrieb Albert Einstein dessen Werk als „das Tiefste und Fruchtbarste, das die Physik seit Newton entdeckt hat“.

Algebra mit Elementen der Geometrie zu vereinen, ist ein Grundzug seines Werks. Maxwell zeigte, dass elektrische und magnetische Kräfte zwei sich ergänzende Erscheinungen des Elektromagnetismus sind. Er zeigte, dass sich elektrische und magnetische Felder in Form von elektromagnetischen Wellen mit einer konstanten Geschwindigkeit von etwa 3·108 m/s durch den Raum bewegen können, was genau der Lichtgeschwindigkeit entspricht. Er postulierte, dass das Licht eine Form von elektromagnetischer Strahlung sei.

Leben

Frühe Jahre

Maxwell wurde als einziges Kind des Rechtsanwalts John Clerk Maxwell aus Edinburgh in der India Street 14 in der schottischen Hauptstadt Edinburgh geboren. Maxwells frühe Erziehung, die auch das Bibelstudium umfasste, wurde ihm durch seine christliche Mutter zuteil. Seine frühe Jugend verbrachte er zumeist auf dem Familiensitz Glenlair bei Dumfries. Maxwells Mutter starb, als er erst 8 Jahre alt war. Später ging Maxwell zur Edinburgh Academy. Sein Spitzname in der Schule war „Dafty“ (Dussel oder Sonderling). Er bekam ihn, weil er am ersten Schultag selbstgemachte Schuhe trug. 1845, im Alter von 14 Jahren, schrieb Maxwell eine Arbeit, die den Weg beschreibt, mit einer Schnur mathematische Kurven zu zeichnen.

Mittlere Jahre

Maxwell 1855 in Cambridge, in der Hand die Farbscheibe seiner ersten optischen Experimente.

1847 schrieb sich Maxwell an der Universität Edinburgh ein und studierte Naturphilosophie, Moralphilosophie und mentale Philosophie. In Edinburgh studierte er bei Sir William Hamilton. 18-jährig, immer noch Student in Edinburgh, schrieb er zwei Beiträge für die Transactions of the Royal Society of Edinburgh, von denen einer, On the Equilibrium of Elastic Solids (Über das Gleichgewicht von elastischen Festkörpern), die Grundlage für eine einzigartige Entdeckung in seinem späteren Leben legte, die zeitweilige Doppelbrechung in viskosen Flüssigkeiten durch Scherkräfte.

1850 wechselte Maxwell zur Universität Cambridge. Zuerst schrieb er sich am Peterhouse ein, ging dann aber zum Trinity-College, weil er glaubte, hier leichter ein Stipendium zu bekommen. Am Trinity-College wurde er in eine geheime Verbindung, bekannt als die Cambridge Apostles, gewählt. Im November 1851 studierte Maxwell bei seinem Tutor William Hopkins, dessen Spitzname „wrangler-maker“ war („Wrangler“ sind Studenten, die die mathematische Prüfung am besten bestehen). Einen großen Teil der Ausarbeitungen seiner elektromagnetischen Gleichungen vollendete Maxwell, als er noch Student ohne Abschluss war.

1854 schloss Maxwell sein Studium mit der zweitbesten Mathematikprüfung seines Jahrgangs ab. Direkt nach seinem Studienabschluss veröffentlichte er eine wissenschaftliche Abhandlung On Faraday’s Lines of Force (Über Faradays Kraftlinien), in der er einen ersten Hinweis auf seine elektrischen Forschungen gab, die im bedeutendsten Werk seines Lebens ihren Höhepunkt finden sollten.

Von 1855 bis 1872 veröffentlichte er in Abständen eine Serie von wertvollen Forschungen im Zusammenhang mit dem Farbsehen und der Farbblindheit, für die er 1860 mit der Rumford-Medaille der Royal Society ausgezeichnet wurde. Die Instrumente, die er für diese Forschungen benutzte, waren einfach und zweckdienlich (z. B. Farbkreisel).

1856 wurde Maxwell auf den Lehrstuhl für Naturphilosophie am Marischal College in Aberdeen berufen, den er bis zur Zusammenlegung der beiden Colleges im Jahre 1860 innehatte.

1859 gewann er den Adams-Preis in Cambridge für einen originellen Aufsatz mit dem Titel „On the Stability of Saturn's Rings“ (Über die Stabilität der Saturn-Ringe), in dem er zu dem Schluss kam, die Ringe könnten nicht gänzlich fest oder flüssig sein. Maxwell zeigte, dass eine Stabilität nur herrschen könne, wenn die Ringe aus zahlreichen kleinen Festkörpern bestehen. Er widerlegte auch mathematisch die Nebeltheorie, die besagt, dass sich Galaxien durch die fortschreitende Kondensation von gasförmigen Nebeln bilden. Nach seiner Theorie sind dafür Anteile kleiner Festkörper notwendig. 1860 wurde Maxwell Professor am King’s College in London. 1861 wurde er als Mitglied („Fellow“) in die Royal Society gewählt. Er arbeitete in dieser Zeit über elastische Körper und reine Geometrie.

Kinetische Gastheorie

Eine von Maxwells wichtigsten Forschungen beschäftigte sich mit der kinetischen Gastheorie. Beginnend mit Daniel Bernoulli wurde diese Theorie weiter ausgearbeitet durch die folgenden Untersuchungen von John Herpath, John James Waterston, James Prescott Joule und besonders durch Rudolf Clausius. Sie erreichte eine solche Vollkommenheit, dass ihre Vorhersagegenauigkeit sie über jeden Zweifel erhaben machte. Maxwell, der sich auf diesem Gebiet als glänzender Experimentator und Theoretiker zeigte, entwickelte sie überlegen weiter.

Im Jahre 1865 verlegte Maxwell seinen Wohnsitz nach Glenlair in Kirkcudbrightshire, auf das Landgut, das er von seinem Vater John Clerk Maxwell geerbt hatte.

1868 verzichtete er auf den Lehrstuhl für Physik und Astronomie am King’s College in London.

1860 formulierte er die später von Ludwig Boltzmann verallgemeinerte kinetische Gastheorie. Seine Formel, genannt Maxwell-Verteilung, berechnet den Anteil von Gasmolekülen, die sich bei einer gegebenen Temperatur mit einer bestimmten Geschwindigkeit bewegen. In der kinetischen Gastheorie bewirken Temperatur und Druck die Bewegung der Moleküle. Diese Annäherung an den Forschungsgegenstand verallgemeinerte die vorhergehenden Gesetze der Thermodynamik und erklärte die Beobachtungen und Experimente genauer. Maxwells Arbeiten über Thermodynamik führten ihn zu einem Gedankenexperiment, das unter dem Namen „maxwellscher Dämon“ bekannt wurde.

Elektromagnetismus

Eine Postkarte von Maxwell an Peter Guthrie Tait.

Der größte Teil von Maxwells Lebenswerk war der Erforschung der Elektrizität gewidmet. Maxwells wichtigster Beitrag war die Ausarbeitung und mathematische Formulierung von früheren Forschungen über Elektrizität und Magnetismus durch Michael Faraday, André-Marie Ampère und anderen in einem System miteinander verknüpfter Differentialgleichungen. Anfangs waren es 20 Gleichungen, die später durch die Vektorschreibweise zusammengefasst wurden. Diese Gleichungen, die heute insgesamt als Maxwellgleichungen (oder manchmal als „Maxwells wunderbare Gleichungen“) bezeichnet werden, wurden erstmals 1864 in der Royal Society veröffentlicht. Zusammen beschreiben sie das Verhalten sowohl von elektrischen als auch magnetischen Feldern, sowie ihre Wechselwirkung mit Materie. Darüber hinaus sagte Maxwell Wellen von schwingenden elektrischen und magnetischen Feldern voraus, die sich durch den leeren Raum bewegen. Die Geschwindigkeit konnte er aus einfachen elektrischen Experimenten vorhersagen; indem er die Daten benutzte, die damals zur Verfügung standen, berechnete er die Ausbreitungsgeschwindigkeit zu 310.740.000 m/s. Maxwell schrieb 1864:[3]

„This velocity is so nearly that of light, that it seems we have strong reason to conclude that light itself (including radiant heat, and other radiations if any) is an electromagnetic disturbance in the form of waves propagated through the electromagnetic field according to electromagnetic laws.“

Diese Geschwindigkeit ist so nahe an der Lichtgeschwindigkeit, dass wir einen starken Grund zu der Annahme haben, dass das Licht selbst (einschließlich Wärmestrahlung und anderer Strahlung, falls es sie gibt), eine elektromagnetische Welle ist.

Maxwells Vorhersage war richtig. Die Wellentheorie wurde später durch Experimente von Heinrich Hertz bestätigt und bildet die Grundlage der gesamten Funktechnik. Die quantitative Verbindung zwischen Licht und Elektromagnetismus wird als ein großer Triumph der Physik des 19. Jahrhunderts angesehen. Zu dieser Zeit glaubte Maxwell, die Ausbreitung des Lichtes erfordere ein Medium, in welchem die Wellen sich fortpflanzen könnten. Über dieses Medium, das Lichtäther genannt wurde, verfasste Maxwell einen 1878 in der Encyclopædia Britannica erschienen Eintrag mit folgender Zusammenfassung am Ende:[4] [5]

„Welche Schwierigkeiten wir auch haben, um eine konsistente Vorstellung der Beschaffenheit des Äthers zu entwickeln: Es kann keinen Zweifel geben, dass der interplanetarische und interstellare Raum nicht leer ist, sondern dass beide von einer materiellen Substanz erfüllt sind, die gewiss die umfangreichste und vermutlich einheitlichste Materie ist, von der wir wissen.“

Im Laufe der Zeit ergaben sich jedoch immer größere Schwierigkeiten, die Existenz eines solchen Mediums, das den ganzen Raum erfüllte, aber durch mechanische Mittel unauffindbar war, mit den Ergebnissen der Experimente wie z. B. dem Michelson-Morley-Experiment in Einklang zu bringen. Darüber hinaus schien es ein absolutes Bezugssystem, in welchem die Gleichungen gültig waren, zu benötigen. Dies hätte zur Folge gehabt, dass die Gleichungen für einen bewegten Beobachter eine andere Form gehabt hätten. Diese Schwierigkeit regte Einstein zur Formulierung der speziellen Relativitätstheorie an und in diesem Prozess verneinte Einstein die Notwendigkeit eines Lichtäthers.

Späte Jahre

James und Katherine Maxwell, 1869.

„Für seine Forschungen über die Zusammensetzung der Farben und andere Beiträge zur Optik“ wurde er von der Royal Society 1860 mit der Rumford-Medaille ausgezeichnet; ein Jahr darauf wurde er als Mitglied („Fellow“) in die Royal Society gewählt.

Er schrieb ein Lehrbuch über die Theorie der Wärme (1871) und eine exzellente einführende Abhandlung über Körper und Bewegung (1876). Im Jahre 1871 wurde er zum ersten Cavendish Professor of Physics nach Cambridge berufen. Maxwell überwachte den Aufbau des Cavendish-Laboratoriums. Er beaufsichtigte jeden Schritt beim Bau des Gebäudes und beim Einkauf der wertvollen Gerätesammlung, mit der das Laboratorium dank des großzügigen Gründers, des 7. Dukes of Devonshire, ausgestattet wurde. Einer der letzten großen Beiträge Maxwells zur Wissenschaft war die Auswertung der Forschungen von Henry Cavendish. Dabei kam heraus, dass sich Cavendish unter anderem mit Fragen über die mittlere Dichte der Erde und die Zusammensetzung des Wassers beschäftigt hatte.

Maxwell hat die Ergebnisse von vorhergehenden elektromagnetischen und optischen Experimenten und Beobachtungen in einer Serie von mathematischen Gleichungen zusammengefasst. Diese Gleichungen (wie auch die Maxwellverteilung) haben sich seitdem in der Physik als außerordentlich nützlich erwiesen. Sie haben sich in allen Fällen bewährt und einige neue Gesetze des Elektromagnetismus und der Optik hervorgebracht, die wichtigsten über elektromagnetische Strahlung. Die Gleichungen sind grundlegend für Radio und Fernsehen und können für die Untersuchung von Röntgenstrahlung, Gammastrahlung und Infrarotstrahlung und andere Formen von Strahlung benutzt werden. The Life of James Clerk Maxwell wurde von seinem Klassenkameraden und lebenslangem Freund, Professor Lewis Campbell (1830–1908), 1882 veröffentlicht. Seine gesammelten Werke, einschließlich der Serie von Artikeln über die Eigenschaften von Materie wurden in zwei Bänden von der Cambridge University Press 1890 herausgegeben.

Ehrungen

Zu Maxwells Ehren wurde die cgs-Einheit Maxwell des magnetischen Flusses benannt. Eine Gebirgskette auf der Venus, Maxwell Montes, wurde nach ihm benannt, da diese durch die von ihm postulierten elektromagnetischen Wellen (Radar-Beobachtungen) entdeckt wurde.[6] Außerdem trägt das James Clerk Maxwell Telescope auf dem Mauna Kea, das größte Teleskop der Welt für elektromagnetische Strahlung zwischen Infrarot und Mikrowellen mit einem Durchmesser von 15 m seinen Namen. Auch ein Mondkrater ist nach James C. Maxwell benannt.

Ihm zu Ehren sind der James-Clerk-Maxwell-Preis für Plasmaphysik und die Maxwell-Medaille benannt.

Veröffentlichungen (Auswahl)

  • On the Description of Oval Curves, and those having a plurality of Foci. In: Proceedings of the Royal Society of Edinburgh. Band 2, 1846, S. 89–91, (online).
  • Illustrations of the Dynamical Theory of Gases. 1860.
  • On Physical Lines of Force. 1861.
  • A Dynamical Theory of the Electromagnetic Field. In: Philosophical Transactions of the Royal Society. Band 155, 1864, S. 459–512, DOI:10.1098/rstl.1865.0008.
  • Theory of Heat. 1871.
  • A Treatise on Electricity and Magnetism. 1873.
  • Ether. In Encyclopædia Britannica. 9, Auflage 1878
  • Molecules. In: Nature. September 1873.
  • On the Results of Bernoulli’s Theory of Gases as Applied to their Internal Friction, their Diffusion, and their Conductivity for Heat.

Einzelnachweise

  1. Das Brockhaus Konversationslexikon beschreibt Maxwell um 1896 so: „Die Hauptleistungen M.s sind auf dem Gebiete der mechan. Wärmetheorie, der Ausbau der dynamischen Gastheorie; auf dem Gebiete der Elektricitätslehre aber ist M. Begründer der Elektrooptik, welche Hertz weiter entwickelt hat. Bei seinen Studien des Magnetismus und der Elektricität knüpfte M. an Faraday an und ergänzte dessen Arbeiten nach der mathem. Richtung. Schon 1856 bearbeitete er die Faradayschen Kraftlinien, dann brachte er 1864 seine Dynamische Theorie des magnetischen Feldes und 1868 die Methode direkter Vergleichung der elektrostatischen mit der elektromagnetischen Kraft.“ Zitiert nach Brockhaus' Konversationslexikon, F. A. Brockhaus Leipzig, Berlin und Wien, 14. Auflage, 1894–1896
  2. Für das Autorenkollektiv von Meyers Konversationslexikon um 1892 war Maxwell „neben Thomson der bedeutendste mathematische Physiker in England. Seine zahlreichen und bedeutsamen Arbeiten erstrecken sich hauptsächlich auf die mechanische Wärmetheorie, speziell auf die neuere Gastheorie, zu deren Ausbau er wesentlich beigetragen, und auf die Elektrizitätslehre, zu deren theoretischer Behandlung er ganz neue Wege eingeschlagen hat.“ Zitiert nach Meyers Konversationslexikon, Verlag des Bibliographischen Instituts, Leipzig und Wien, 4. Auflage, 1885–1892
  3. Maxwell, James Clerk: A Dynamical Theory of the Electromagnetic Field. 1864 eingereicht und dann veröffentlicht in: Philosophical Transactions of the Royal Society of London (155), 1865, S. 459-512
  4. Gesamter Originaltext von Maxwells Eintrag über den Äther in der Encyclopædia Britannica, Ninth Edition auf Wikisource
  5. Zitiert und im historischen Zusammenhang dargestellt in: Leonard Mlodinow: Das Fenster zum Universum. Eine kleine Geschichte der Geometrie (Original: Euclid’s Window), Campus Verlag 2002, ISBN 3-593-36931-1 – Teil 4, Die Geschichte von Einstein, Seiten 171–177.
  6. Venus – Maxwell Montes auf nasaimages.org (abgerufen 20. April 2010)

Literatur

  • Quirin Engasser (Hrsg.): Grosse Männer der Weltgeschichte. 1000 Biographien in Wort und Bild. Neuer Kaiser Verlag, Klagenfurt 1987, ISBN 3-704330655, S. 298

Weblinks

 Commons: James Clerk Maxwell – Album mit Bildern und/oder Videos und Audiodateien
 Wikisource: James Clerk Maxwell – Quellen und Volltexte (Englisch)

Wikimedia Foundation.

Игры ⚽ Нужна курсовая?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • James Clerk Maxwell — (1831–1879) Born 13 June 1831 …   Wikipedia

  • James Clerk Maxwell — (Edimburgo, 13 de junio de 1831 Glenlair, Reino Unido, 5 de noviembre de 1879). Físico británico. Nació en el seno de una familia escocesa de la clase media, hijo único de un abogado de Edimburgo. Tras la temprana muerte de su madre a causa de un …   Enciclopedia Universal

  • James Clerk Maxwell — Pour les articles homonymes, voir Maxwell. James Clerk Maxwell James Clerk Maxwell Naissance 13 …   Wikipédia en Français

  • James Clerk Maxwell — Para otros usos de este término, véase Maxwell (desambiguación). James Clerk Maxwell James Clerk Maxwell Nacimiento …   Wikipedia Español

  • James Clerk Maxwell — noun Scottish physicist whose equations unified electricity and magnetism and who recognized the electromagnetic nature of light (1831 1879) • Syn: ↑Maxwell, ↑J. C. Maxwell • Instance Hypernyms: ↑physicist * * * James Clerk Maxwell [James Clerk… …   Useful english dictionary

  • James Clerk Maxwell Prize in Plasma Physics — The James Clerk Maxwell Prize in Plasma Physics Awarded for Outstanding contributions to the field of Plasma Physics Presented by American Physical Society Division of Plasma Physics Country United States First awarded 1975 …   Wikipedia

  • James Clerk Maxwell Telescope — The James Clerk Maxwell Telescope (JCMT) is a 15 metre submillimetre wavelength telescope at Mauna Kea Observatory in Hawaii. It is the largest astronomical telescope in the world designed specifically to operate in the submillimetre regime… …   Wikipedia

  • James Clerk Maxwell Telescope — Das James Clerk Maxwell Telescope (JCMT) ist ein Radioteleskop für Wellenlängen im Submillimeterbereich mit einer 15 Meter durchmessenden Empfangsantenne im Mauna Kea Observatorium in Hawaii. Es ist das weltgrößte Radioteleskop, welches auf… …   Deutsch Wikipedia

  • James-Clerk-Maxwell-Preis für Plasmaphysik — Der James Clerk Maxwell Prize for Plasma Physics ist ein jährlich von der American Physical Society vergebender Preis in Plasmaphysik. Er ist nach James Clerk Maxwell benannt und mit 10.000 Dollar dotiert. Preisträger 2011: Gregor E. Morfill 2010 …   Deutsch Wikipedia

  • James Clerk Maxwell Telescope — 19° 49′ 22″ N 155° 28′ 38″ W / 19.82284, 155.47734 J …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”