Maxwell-Boltzmann-Verteilung

Maxwell-Boltzmann-Verteilung
Maxwell-Boltzmann-Verteilung
Parameter a>0\,
Definitionsbereich x\in [0;\infty)
Wahrscheinlichkeitsdichte \sqrt{\frac{2}{\pi}} \frac{x^2 e^{-x^2/(2a^2)}}{a^3}
Kumulierte Verteilungsfunktion \textrm{erf}\left(\frac{x}{\sqrt{2} a}\right) -\sqrt{\frac{2}{\pi}} \frac{x e^{-x^2/(2a^2)}}{a}
Erwartungswert \mu=2a \sqrt{\frac{2}{\pi}}
Modus \sqrt{2} a
Varianz \sigma^2=\frac{a^2(3 \pi - 8)}{\pi}
Schiefe \gamma_1=\frac{2 \sqrt{2} (5 \pi - 16)}{(3 \pi - 8)^{3/2}}
Wölbung \gamma_2=-4\frac{96-40\pi+3\pi^2}{(3 \pi - 8)^2}

Die Maxwell-Boltzmann-Verteilung oder auch maxwellsche Geschwindigkeitsverteilung ist eine Wahrscheinlichkeitsverteilung der statistischen Physik und spielt in der Thermodynamik, speziell der kinetischen Gastheorie, eine wichtige Rolle. Sie beschreibt die Verteilung des Betrags v = |\vec{v}| der Teilchengeschwindigkeiten in einem idealen Gas. Abgeleitet wurde sie 1860 von James Clerk Maxwell und Ludwig Boltzmann, denen sie auch ihren Namen verdankt.

In einem idealen Gas bewegen sich nicht alle Gasteilchen mit der gleichen Geschwindigkeit, sondern statistisch verteilt mit verschiedenen Geschwindigkeiten. Es wird hierbei keine Raumrichtung bevorzugt, die Bewegungsrichtung ist also rein zufällig (brownsche Molekularbewegung). Mathematisch lässt sich dies so formulieren, dass die Komponenten des Geschwindigkeitsvektors \vec{v} eines Gasteilchens der Masse m unabhängig voneinander und normalverteilt sind, mit den Parametern

\mu = 0,\,\sigma = \sqrt{\frac{k_B T}{m}}

Die Dichte der Verteilung von \vec{v} ergibt sich somit als das Produkt

p(\vec{v}) = \left(\frac{m}{2\pi k_B T}\right)^{3/2} \mathrm e^{-\frac{m \vec{v}^2}{2k_B T}}

der Verteilungen der Komponenten. Die Verteilung des Betrags der Geschwindigkeit erhält man, indem man die Wahrscheinlichkeit mit Hilfe eines Volumenintegrals berechnet

P\left(|\vec{v}| \leq v\right) = \int_{B_v(0)} p(\vec{v})\ dV

Da der Integrand aber nur vom Betrag v = |\vec{v}| abhängt, kann man mit der Hilfsfunktion \tilde{p}(v) = p(|\vec{v}|) das Volumenintegral über die dreidimensionale Kugel Bv(0) über ein eindimensionales Integral berechnen

\int_{B_v(0)} p(\vec{v})\ dV = 4\pi \int_0^v u^2 \tilde{p}(u)\ du

Die Wahrscheinlichkeitsdichte p(v) ergibt sich dann durch Ableiten von P\left(|\vec{v}| \leq v\right) nach v zu

p(v) = 4\pi \left(\frac{m}{2\pi k_B T}\right)^{3/2} v^2 \exp\left(-\frac{m v^2}{2k_B T}\right)

Die vereinfachende Voraussetzung eines idealen Gases innerhalb der Maxwell-Boltzmann-Verteilung gegenüber der Geschwindigkeitsverteilung der Teilchen eines realen Gases führen zu einer Abweichung, falls man diese auf reale Gase anwendet. Die Approximation der Maxwell-Boltzmann-Verteilung auf reale Gase ist hierbei umso besser, je schwächer der reale Charakter des Gases ist. Im Falle eines niedrigen Druckes und einer hohen Temperatur ist diese Näherung für die meisten Betrachtungen ausreichend.

Inhaltsverzeichnis

Formulierung der Geschwindigkeitsverteilung

Die Dichte der Verteilung ist im dreidimensionalen Raum in zwei verschiedenen Schreibweisen gegeben durch:

 F(v) = \sqrt{\frac{2}{\pi}} \left( \frac{m_\text{M}}{k_\mathrm{B}T} \right)^{3/2} v^2 \exp\left( -\frac{m_\text{M} v^2}{2k_\mathrm{B}T} \right) = 4 \pi \left( \frac{M}{2\pi R T} \right)^{3/2} v^2 \exp \left( -\frac{M v^2}{2 R T} \right)

Hierbei stehen die einzelnen Formelzeichen für folgende Größen:

Bei einer eindimensionalen Betrachtung lautet die Maxwell-Boltzmann-Verteilung:


F(v) = \sqrt{\frac{m_\text{M}}{2\pi k_\mathrm{B}T}} \exp\left( -\frac{m_\text{M} v^2}{2 k_\mathrm{B}T} \right)
,

wobei die Geschwindigkeit v nur in eine Richtung (und ihre Gegenrichtung) weisen kann, beispielsweise in +x-Richtung und -x-Richtung.

Die Wahrscheinlichkeit w, dass ein Gasteilchen eine Geschwindigkeit zwischen v1 und v2 besitzt errechnet sich, unabhängig von der Dimension, aus:

w = \int_{v1}^{v2} F(v)\, \mbox{d} v

Der Anteil f der Teilchen in diesem Geschwindigkeitsintervall (Δv = v2 - v1) errechnet sich, als Näherung für ein möglichst kleines Geschwindigkeitsintervall, aus:

f = F(v1v

Bedeutung und Anwendungsbereich

Folgerungen aus den Gleichungen

Stoffabhängigkeit der Geschwindigkeitsverteilung bei 0 °C:
WasserstoffmM(H2) = 2 u
StickstoffmM(N2) = 28 u
ChlormM(Cl2) = 71 u
Temperaturabhängigkeit der Geschwindigkeitsverteilung für Stickstoff
  • Aus obigen Gleichungen folgt, dass der Anteil f der Teilchen im Geschwindigkeitsintervall Δv direkt proportional zu Δv selbst ist, solange F(v) konstant bleibt. Wird Δv also geringfügig erhöht bzw. bezieht man mehr Geschwindigkeiten mit in das Intervall ein, unter der zusätzlichen Annahme Temperatur und molare Masse seien konstant, so steigt die Anzahl der in ihm befindlichen Teilchen bis auf geringe Abweichungen proportional zu Δv an. Mit anderen Worten: Die Verteilungsfunktion ist differenzierbar.
  • Die Verteilungsfunktion besitzt eine abfallende Exponentialfunktion der Form e-x mit x = Mv2/2RT. Da der Ausdruck x sich bei konstanter Temperatur und konstanter molarer Masse direkt proportional zum Quadrat der Teilchengeschwindigkeit v2 verhält, lässt sich hieraus schlussfolgern, dass die Exponentialfunktion und damit in eingeschränktem Umfang auch der Anteil der Moleküle für große Geschwindigkeiten sehr klein und dementsprechend für kleine Geschwindigkeiten sehr groß wird (für den exakten Zusammenhang siehe die Abbildungen zur Rechten).
  • Für Gase mit einer großen molaren Masse M wird der Ausdruck x, unter Annahme einer konstanten Temperatur, ebenfalls sehr groß und die Exponentialfunktion nimmt folglich schneller ab. Dies bedeutet, dass die Wahrscheinlichkeit schwere Moleküle bei großen Geschwindigkeiten anzutreffen sehr klein ist und dementsprechend sehr groß für leichtere Moleküle mit einer geringen molaren Masse (siehe Abbildung oben rechts).
  • Im gegensätzlichen Fall einer großen Temperatur und einer konstanten molaren Masse wird der Ausdruck x sehr klein und die Exponentialfunktion geht dementsprechend bei einer ansteigenden Geschwindigkeit schneller gegen Null. Bei einer sehr hohen Temperatur ist der Anteil der Teilchen daher geringer als bei einer niedrigeren Temperatur (siehe Abbildung unten rechts).
  • Je geringer die Geschwindigkeit, desto stärker nimmt der quadratische Ausdruck v2 außerhalb der Exponentialfunktion ab. Dies bedeutet, dass auch der Anteil der schnelleren Moleküle bei geringen Geschwindigkeiten schneller abnimmt als die Geschwindigkeit selbst, im Gegenzug jedoch auch, dass dieser bei einem Geschwindigkeitszunahme quadratisch zunimmt.

Alle anderen Größen bedingen, dass sich der Anteil der Teilchen bei einer bestimmten Geschwindigkeit immer im Intervall zwischen null und eins bewegt ([0,1]). Die beiden Abbildungen zur Rechten verdeutlichen die Abhängigkeit der Maxwell-Boltzmann-Verteilung von Teilchenmasse und Temperatur des Gases. Mit steigender Temperatur T nimmt die durchschnittliche Geschwindigkeit zu und die Verteilung wird gleichzeitig breiter. Mit steigender Teilchenmasse mM hingegen nimmt die durchschnittliche Geschwindigkeit ab und die Geschwindigkeitsverteilung wird gleichzeitig schmaler. Dieser Zusammenhang zwischen Teilchengeschwindigkeit und Temperatur bzw. Teilchengeschwindigkeit und Teilchenmasse/molare Masse ist hierbei auch quantitativ beschreibbar. Siehe hierzu den Abschnitt quadratisch gemittelte Geschwindigkeit.

Bedeutung für die Thermodynamik

Die Maxwell-Boltzmann-Verteilung erklärt beispielsweise den Prozess der Verdunstung. Beispielsweise kann feuchte Wäsche bei Temperaturen von 20 °C trocknen, da es in dieser Verteilungskurve einen geringen Anteil von Molekülen mit der erforderlich hohen Geschwindigkeit gibt, welche sich aus dem Flüssigkeitsverband lösen können. Es wird also auch bei niedrigen Temperaturen immer einige Moleküle geben, die schnell genug sind, die Anziehungskräfte durch ihre Nachbarn zu überwinden und vom flüssigen oder festen Aggregatzustand in den gasförmigen Aggregatzustand überzugehen, was man als Verdampfung bzw. Sublimation bezeichnet. Umgekehrt gibt es aber auch unter den vergleichsweise schnellen Teilchen des Gases immer einige, die keine ausreichende Geschwindigkeiten besitzen und daher wieder vom gasförmigen in den flüssigen oder festen Aggregatzustand wechseln, was man als Kondensation bzw. Resublimation bezeichnet. Diese Vorgänge werden unter dem Begriff der Phasenumwandlung zusammengefasst, wobei sich zwischen Teilchen, die in die Gasphase eintreten, und Teilchen, die aus der Gasphase austreten, insofern es keine Störungen von außen gibt, ein dynamisches Gleichgewicht einstellt. Dieses ist Untersuchungsgegenstand der Gleichgewichtsthermodynamik, daher nennt man es auch thermodynamisches Gleichgewicht. Die Teilchen der gasförmigen Phase üben hierbei im Gleichgewichtszustand einen Druck aus, den man als Sättigungsdampfdruck bezeichnet. Grafisch dargestellt wird das Phasenverhalten von Stoffen in deren Phasendiagramm.

Siehe auch: Zustandsgleichung, Fundamentalgleichung, Thermodynamisches Potenzial, Ideales Gas, Reales Gas, Tripelpunkt, Kritischer Punkt

Teilchengeschwindigkeiten

Wahrscheinlichste Geschwindigkeit

Die wahrscheinlichste Geschwindigkeit

\hat{v} = {\sqrt{\frac{2 k_\mathrm{B} T}{m_\text{M}}}} = \sqrt{\frac{2 R T}{M}}

ist die Geschwindigkeit, an der die Verteilungsfunktion F(v) ihren maximalen Wert hat. Sie kann aus der Forderung \frac{\text{d}F(v)}{\text{d}v} = 0 berechnet werden.

Mittlere Geschwindigkeit

Die mittlere Geschwindigkeit \bar v ist definiert durch:

\bar v := {\frac{v_1 + v_2 + v_3 + \ldots + v_N}{N}}

Hierbei sind vn (n = 1, 2, 3, \ldots, N) die einzelnen Geschwindigkeiten der Teilchen und N deren Gesamtzahl.

\bar v = \int_0^{\infin} v \, F(v) \, \text{d}v

Als Lösung des Integrals erhält man:

\bar v = \sqrt{\frac{8 k_\mathrm{B} T}{\pi m_\text{M}}} = \sqrt{\frac{8 R T}{\pi M}}

Quadratisch gemittelte Geschwindigkeit

Die quadratisch gemittelte Geschwindigkeit \sqrt {\overline{v^2}} ist definiert durch:

\sqrt {\overline{v^2}} := \sqrt {{v_1^2 + v_2^2 + v_3^2 + \ldots + v_N^2} \over {N}}

Aus der kinetischen Gastheorie ergibt sich folgende Zustandsgleichung:

p V = \frac{1}{3} n M \overline{v^2}

Die empirisch ermittelte Zustandsgleichung idealer Gase ist hierbei:

pV = nRT

Setzt man den Ausdruck pV gleich erhält man:

\frac{1}{3} n M \overline{v^2} = n R T

Umgestellt nach \overline{v^2} erhält man schließlich:

\sqrt {\overline{v^2}} = \sqrt { \frac{3 k_\mathrm{B} T}{m_\mathrm{M}} } = \sqrt { \frac{3 R T}{M} }

Hierbei zeigt sich, dass die quadratisch gemittelte Geschwindigkeit der Gasteilchen direkt proportional zur Quadratwurzel der Temperatur ist, insofern die molare Masse konstant bleibt, was jedoch im Allgemeinen der Fall ist.

Daraus lässt sich, unter der Annahme einer konstanten molaren Masse, ein wichtiger Grundsatz ableiten:

Eine Verdopplung der Temperatur auf der Kelvin-Skala führt zu einer Erhöhung der quadratisch gemittelten Geschwindigkeit um den Faktor \sqrt {2} \approx 1,4142.

Durch diese Grundbeziehung lässt sich die Abhängigkeit der Temperatur von der Geschwindigkeit der Teilchen nicht nur qualitativ, sondern auch quantitativ ableiten. Die Temperatur ist also auf diesem Wege durch die kinetische Gastheorie definierbar.
Unter der Annahme einer konstanten Temperatur und einer variablen molaren Masse zeigt sich hierbei in gleicher Form die Abhängigkeit zwischen dieser und der quadratisch gemittelten Geschwindigkeit, wobei beide jedoch im Gegensatz zur Temperatur umgekehrt proportional zueinander sind, wie aus obiger Gleichung ersichtlich ist.

Zum gleichen Ergebnis kommt man auch, wenn man F(v) in folgende Gleichung substituiert und anschließend integriert:

\sqrt {\overline{v^2}} = \sqrt{\int v^2 \, F(v) \, dv}

Die quadratisch gemittelte Geschwindigkeit ist dabei aber auch ein Maß für die mittlere kinetische Energie (Ekin) der Moleküle:

E_\mathrm{kin} = \frac{1}{2} m v_n^2 \qquad \qquad \qquad \overline{E_\mathrm{kin}} = \frac{1}{2} m \overline{v^2}

Umgestellt ergibt sich hieraus:

\sqrt {\overline{v^2}} = \sqrt {\frac {2 \overline{E_\mathrm{kin}}}{m_\mathrm{M}}}

Harmonischer Mittelwert

Für Zwecke der Stoßzeiten usw. benötigt man einen weiteren Mittelwert, harmonischer Mittelwert genannt. Der harmonische Mittelwert \breve v ist definiert durch:

\frac{1}{\breve v} := \frac{1}{N} \cdot \left(\frac{1}{v_1} + \frac{1}{v_2} + \frac{1}{v_3} + \ldots + \frac{1}{v_N}\right)

Hierbei sind vn (n = 1, 2, 3,\ldots, N) die einzelnen Geschwindigkeiten der Teilchen und N deren Gesamtzahl.

\frac{1}{\breve v} = \int_0^{\infin} \frac{F(v)}{v} \, \text{d}v

Durch Substitution von \frac{m_\text{M} v^2}{2 k_\mathrm{B}T} = z und v~d v = \frac{k_\mathrm{B}T}{m_\text{M}} d z und integrieren erhält man:

\frac{1}{\breve v} = \sqrt{\frac{2}{\pi}} \cdot \sqrt{\frac{m_\text{M}}{k_\mathrm{B}T}} = \sqrt{\frac{2 m_\text{M}}{\pi k_\mathrm{B}T}}

oder

\breve v = \sqrt{\frac{\pi k_\mathrm{B}T}{2 m_\text{M}}} = \sqrt{\frac{\pi R T}{2 \text{M}}}

Beziehungen zwischen den Geschwindigkeiten

Maxwell-Boltzmannsche Geschwindigkeitsverteilung für Stickstoff

Im Bild zur Rechten ist die maxwell-boltzmannsche Geschwindigkeitsverteilung für Stickstoff (N2) bei drei verschiedenen Temperaturen abgebildet. Es ist auch die wahrscheinlichste Geschwindigkeit und die mittlere Geschwindigkeit eingezeichnet. Dabei gilt immer, dass die wahrscheinlichste Geschwindigkeit kleiner als die mittlere Geschwindigkeit ist. Allgemein gilt:

\hat v < \bar v < \sqrt {\overline{v^2}}

Der Zusammenhang zwischen den Geschwindigkeiten ergibt sich dabei aus:

\bar v = \sqrt{8 \over {3 \pi}} \cdot \sqrt {\overline{v^2}} \approx 0{,}921 \cdot \sqrt {\overline{v^2}}
Umrechnungsfaktoren zwischen den verschiedenen Teilchengeschwindigkeiten (gerundet)
nach↓  \  von→ \hat v \bar v \sqrt {\overline{v^2}} \breve v
\hat v 1 0,886 0,816 1,128
\bar v 1,128 1 0,921 1,273
\sqrt {\overline{v^2}} 1,225 1,085 1 1,382
\breve v 0,886 0,785 0,724 1
Beispielwerte für die verschiedenen Teilchengeschwindigkeiten
T  \  v \hat v \bar v \sqrt {\overline{v^2}} \breve v
100 K (−173,15 °C) 243,15 m/s 274,36 m/s 297,79 m/s 411,54 m/s
300 K (26,85 °C) 421,15 m/s 475,20 m/s 515,78 m/s 712,79 m/s
800 K (526,85 °C) 687,74 m/s 776,02 m/s 842,29 m/s 1164,02 m/s
Umrechnungsfaktoren zwischen den verschiedenen Teilchengeschwindigkeiten (genau)
nach↓  \  von→ \hat v \bar v \sqrt {\overline{v^2}} \breve v
\hat v 1 \frac{\sqrt {\pi}}{2} \sqrt {\frac{2}{3}} \frac{2}{\sqrt {\pi}}
\bar v \frac{2}{\sqrt {\pi}} 1 \sqrt {\frac{8}{3 \pi}} \frac{4}{\pi}
\sqrt {\overline{v^2}} \sqrt {\frac{3}{2}} \sqrt {\frac{3 \pi}{8}} 1 \sqrt {\frac{6}{\pi}}
\breve v \frac{\sqrt {\pi}}{2} \frac{\pi}{4} \sqrt {\frac{\pi}{6}} 1
\sqrt{\frac{k_\mathrm{B}T}{m_\text{M}}} \sqrt {2} \sqrt {\frac{8}{\pi}} \sqrt {3} \sqrt {\frac{\pi}{2}}

Herleitung

Die Maxwell-Boltzmann-Verteilung lässt sich mit den Methoden der statistischen Physik herleiten. Man betrachtet ein N-Teilchensystem mit der Hamilton-Funktion

H=\sum_{i=1}^{N}\frac{p_{i}^{2}}{2m}+U(\vec{x}_{1}, \ldots,\vec{x}_{N})

Zur Herleitung wird nur die Annahme gemacht, dass das Potential U konservativ, also von den pi unabhängig ist. Daher gilt die folgende Herleitung auch für reale Gase.

Das System befinde sich im kanonischen Zustand mit der Phasenraumdichte

w=\frac{1}{Z(\beta)}e^{-\beta H(\vec{x}_{1},\vec{p}_{1},\, \ldots\,,\vec{x}_{N},\vec{p}_{N})}

und der kanonischen Zustandssumme

Z(\beta)=\int_{\mathbb{R}^{6N}}e^{-\beta H(\vec{x}_{1},\vec{p}_{1},\,\ldots\,,\vec{x}_{N},\vec{p}_{N})} \text{d}\tau   mit   \text{d}\tau=\frac{1}{N!(2\pi\hbar)^{3N}}\; \text{d}^{3}x_1 \text{d}^{3}p_1\,\ldots\, \text{d}^{3}x_N \text{d}^{3}p_N

Der Parameter β ist proportional zur inversen Temperatur

\beta=\frac{1}{k_{{\rm B}}T}

Der Erwartungswert einer klassischen Observablen ist gegeben durch

\langle o\rangle=\int_{\mathbb{R}^{6N}}o\, w\, \text{d}\tau

Für die Transformation von Wahrscheinlichkeitsdichten gilt: Gegeben sei eine Zufallsvariable X und eine Wahrscheinlichkeitsdichte \mathcal{P}_X:\;\mathbb{R}^n\rightarrow\mathbb{R} und eine Abbildung Y:\;\mathbb{R}^n\rightarrow\mathbb{R}^m. Dann ist \mathcal{P}_Y(y)=\int_{\mathbb{R}^n}\delta(y-Y(x))\,\mathcal{P}_X(x) \,\text{d}x =\langle \delta(y-Y(x))\rangle die Wahrscheinlichkeitsdiche der Zufallsvariablen Y.

Nun können wir die Wahrscheinlichkeitsdichte für den Impuls \vec{p} irgendeines Teilchens j\in\left\{ 1,\ldots,N\right\} des Systems berechnen. Nach obigem Transformationssatz gilt:

\mathcal{P}_{\vec{p}_j}(\vec{p})=\langle\delta(\vec{p}_j-\vec{p})\rangle=\int_{\mathbb{R}^{6N}}\delta(\vec{p}_j-\vec{p})\, w\, \text{d}\tau = \frac{1}{Z(\beta)}\int_{\mathbb{R}^{6N}}\delta(\vec{p}_j-\vec{p})\, e^{-\beta H} \, \text{d}\tau=
=\frac{\int_{\mathbb{R}^{6N}}{\delta }(\vec{p}_{j}-\vec{p})\,e^{-\beta H}\,\text{d}\tau }{\int_{\mathbb{R}^{6N}}{e^{-\beta H}}\,\text{d}\tau }=\frac{\int_{\mathbb{R}^{3N}}{e^{-\beta U}\,\text{d}^{3}x_{1}\,\ldots\,\text{d}^{3}x_{N}\;}\ \int_{\mathbb{R}^{3N}}{\delta (\vec{p}_{j}-\vec{p})\,e^{-\frac{\beta }{2m}\sum_{i=1}^{N}{p_{i}^{2}}}\,\text{d}p_{1}\,\ldots\,\text{d}^{3}p_{N}\;}}{\int_{\mathbb{R}^{3N}}{e^{-\beta U}\,\text{d}^{3}x_{1}\,\ldots\,\text{d}^{3}x_{N}\;}\ \int_{\mathbb{R}^{3N}}{e^{-\frac{\beta }{2m}\sum_{i=1}^{N}{p_{i}^{2}}}\,\text{d}^{3}p_{1}\,\ldots\,\text{d}^{3}p_{N}\;}}

Alle Orts-Integrationen lassen sich kürzen, sowie alle Impuls-Integrationen für i\neq j. Somit bleibt nur noch die pj-Integration übrig.

\mathcal{P}_{\vec{p}_{j}}(\vec{p})=\frac{\int_{\mathbb{R}^{3}}\delta(\vec{p}_{j}-\vec{p})\, e^{-\frac{\beta}{2m}p_{j}^{2}} \,\text{d}^3 p_j}{\int_{\mathbb{R}^{3}}e^{-\frac{\beta}{2m}p_{j}^{2}} \text{d}^3 p_j}

Zur Auswertung dieses Ausdrucks nutzt man im Zähler die Faltungseigenschaft der Delta-Distribution

\int_{\mathbb{R}^{3}}{\delta }(\vec{x}-\vec{x}_{0})f(\vec{x})\,\text{d}^{3}x=f(\vec{x}_{0})

Im Nenner integriert man über eine Gauß-Funktion; die Integration in drei Dimensionen lässt sich auf ein eindimensionales Integral zurückführen mit x^{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}

\int_{\mathbb{R}^{3}}{e^{-a x^{2}}\text{d}^{3}x}=\int_{\mathbb{R}^{3}}{e^{-ax_{1}^{2}}e^{-ax_{2}^{2}}e^{-ax_{3}^{2}}\text{d}x_{1}\text{d}x_{2}\text{d}x_{3}}=\left( \int_{-\infty }^{\infty }{e^{-ax^{2}}\text{d}x} \right)^{3}\,=\left( \frac{\pi }{a} \right)^{\frac{3}{2}}

Man erhält die Wahrscheinlichkeitsdichte für den Impuls irgendeines Teilchens:

\mathcal{P}_{\vec{p}_{j}}(\vec{p})=\left(\frac{\beta}{2m\pi}\right)^{\frac{3}{2}}e^{-\frac{\beta}{2m}p^{2}}

Der Vorfaktor (\tfrac{\beta}{2m\pi})^{3/2}=(\tfrac{\lambda}{h})^{3} entspricht im Wesentlichen der thermischen De-Broglie-Wellenlänge λ.

Damit lässt sich die Wahrscheinlichkeitsdichte für den Geschwindigkeitsbetrag v=|\vec{p}|/m mit dem Transformationssatz ermitteln

\mathcal{P}(v)=\int_{\mathbb{R}^{3}}\mathcal{P}_{\vec{p}_{j}}(\vec{p})\,\delta(v-\frac{|\vec{p}|}{m}) \, \text{d}^3 p = \left(\frac{\beta}{2m\pi}\right)^{\frac{3}{2}}\int_{\mathbb{R}^{3}}e^{-\frac{\beta}{2m}p^{2}}\,\delta(v-\frac{|\vec{p}|}{m}) \,\text{d}^3 p

Die Integration führt man in Kugelkoordinaten durch und verwendet die Beziehung \delta(v-|\vec{p}|/m)=m\,\delta(p-mv)

\mathcal{P}(v)=\left(\frac{\beta}{2m\pi}\right)^{\frac{3}{2}}4\pi\int_{0}^{\infty} p^{2}e^{-\frac{\beta}{2m}p^{2}}m\,\delta(p-mv) \,\text{d}p

Nun ist wieder die Faltungseigenschaft der Delta-Distribution zu verwenden

\mathcal{P}(v)=\left(\frac{\beta}{2m\pi}\right)^{\frac{3}{2}}4\pi(mv)^{2}m\, e^{-\frac{\beta}{2m}(mv)^{2}}\Theta(v)=\left(\frac{\beta m}{2\pi}\right)^{\frac{3}{2}}4\pi v^{2}e^{-\beta\frac{m}{2}v^{2}}\Theta(v)

dabei ist Θ(v) die Heaviside-Sprungfunktion, die die Wahrscheinlichkeit für negative Betragsgeschwindigkeiten verschwinden lässt.

Setzt man für \beta=\frac{1}{k_{{\rm B}}T} kommt man zur Maxwell-Boltzmann-Verteilung

\mathcal{P}(v) = \sqrt{\frac{2}{\pi}} \left( \frac{m}{k_\mathrm{B}T} \right)^{\frac{3}{2}} v^2 \,e^{ -\frac{m v^2}{2k_\mathrm{B}T}}\,\Theta(v)

Siehe auch



Wikimedia Foundation.

Игры ⚽ Нужна курсовая?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Maxwell-Boltzmann-Geschwindigkeitsverteilung — Maxwell Boltzmann Verteilung Parameter Definitionsbereich Wahrscheinlichkeitsdichte …   Deutsch Wikipedia

  • Boltzmann-Verteilung — Die Boltzmann Statistik (auch: Gibbs Boltzmann Verteilung, nach Josiah Willard Gibbs und Ludwig Boltzmann) gibt die Wahrscheinlichkeit eines Zustandes eines Systems an, welches im thermodynamischen Gleichgewicht an ein Wärmebad der Temperatur T… …   Deutsch Wikipedia

  • Gibbs-Boltzmann-Verteilung — Die Boltzmann Statistik (auch: Gibbs Boltzmann Verteilung, nach Josiah Willard Gibbs und Ludwig Boltzmann) gibt die Wahrscheinlichkeit eines Zustandes eines Systems an, welches im thermodynamischen Gleichgewicht an ein Wärmebad der Temperatur T… …   Deutsch Wikipedia

  • Maxwell'sche Geschwindigkeitsverteilung — Maxwell Boltzmann Verteilung Parameter Definitionsbereich Wahrscheinlichkeitsdichte …   Deutsch Wikipedia

  • Maxwell-Verteilung — Maxwell Boltzmann Verteilung Parameter Definitionsbereich Wahrscheinlichkeitsdichte …   Deutsch Wikipedia

  • Maxwell — bezeichnet: Maxwell (Einheit), eine veraltete physikalische Einheit Maxwell Gleichungen, vier Gleichungen der Elektrodynamik Maxwell Modell, die Beschreibung viskoelastischer Materialien Maxwell Boltzmann Verteilung, eine… …   Deutsch Wikipedia

  • Boltzmann — Boltzmanns Bild in der Dibner Kollektion Grabmal auf dem Wiener Zentralfriedhof Ludwig Boltzmann (* 20. Februar …   Deutsch Wikipedia

  • Boltzmann — Bọltzmann,   Ludwig, österreichischer Physiker, * Wien 20. 2. 1844, ✝ (Selbstmord) Duino (heute Duino Aurisina, bei Triest) 5. 9. 1906; ab 1869 Professor an verschiedenen österreichischen und deutschen Universitäten, zuletzt (1902) in Wien.… …   Universal-Lexikon

  • Boltzmann-Konstante — Die Boltzmann Konstante (Formelzeichen oder ) ist eine Naturkonstante, die in den Grundgleichungen der statistischen Mechanik eine zentrale Rolle spielt. Sie wurde von Max Planck eingeführt und nach dem österreichischen Physiker Ludwig Boltzmann …   Deutsch Wikipedia

  • Boltzmann-Statistik — Die Boltzmann Statistik (auch: Gibbs Boltzmann Verteilung, nach Josiah Willard Gibbs und Ludwig Boltzmann) gibt die Wahrscheinlichkeit eines Zustandes eines Systems an, welches im thermodynamischen Gleichgewicht an ein Wärmebad der Temperatur T… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”