- Motor-Oktanzahl
-
Die Oktanzahl definiert ein Maß für die Klopffestigkeit eines Ottokraftstoffes. Der Zahlenwert der Oktanzahl bis 100 gibt an, wie viel %-Volumenanteil Isooktan C8H18 (ROZ = 100) sich in einer Mischung mit n-Heptan C7H16 (ROZ = 0) befinden muss, damit dieser die gleiche Klopffestigkeit (in einem Prüfmotor nach ROZ oder MOZ) aufweist wie der zu prüfende Kraftstoff. Zum Beispiel würde eine Oktanzahl von ROZ = 95 eines Benzins bedeuten, dass dessen Klopffestigkeit einem Gemisch aus 95 vol.% Isooktan und 5 vol.% n-Heptan entspricht.
Inhaltsverzeichnis
Allgemeines
Es gibt auch viele Stoffe wie einige Aromate, Erdgas und Flüssiggas, welche eine Oktanzahl größer als 100 aufweisen. Messtechnisch sind diese jedoch schwer zu erfassen, da das Referenzsystem mit Isooktan nur bis zur Oktanzahl 100 definiert ist. Oktanzahlen größer als 100 müssen daher extrapoliert werden. Die Oktanzahl über 100 ROZ / MOZ entspricht der Oktanzahl einer Mischung aus iso-Oktan und Tetraethylblei (TEL); hierbei ist die Oktanzahl des Gemisches einem bestimmten Volumenanteil an TEL im iso-Oktan zugeordnet. Diese Zuordnung erfolgt nach der in DIN 51756 Teil 1 festgelegten Tabelle. Sie kann nicht, wie bei der Oktanzahl bis 100, direkt aus dem Mischungsverhältnis des Bezugskraftstoffes abgelesen werden. In diesem Zusammenhang wird auch der Begriff Blendoktanzahl verwendet; in der Luftfahrt eher die Leistungszahl, letzter angegeben als zweiteiliger „Bruch“ wie z. B. 115/145, welches bedeutet, dass der hier verwendete Sprit bei armem Gemisch eine Leistungszahl von 115, bei reichem Gemisch eine Leistungszahl von 145 besitzt.
Isooktan ist relativ klopffest, n-Heptan verursacht relativ schnell das so genannte Klopfen beim Motor. Grund dafür ist, dass das n-Heptan unkontrolliert schon beim Verdichtungsvorgang durch die Verdichtungswärme im Zylinder zündet. Isooktan kann relativ stark verdichtet werden, ohne dass es zur Selbstzündung kommt. Beim Ottomotor soll das Benzin-Luft-Gemisch durch einen Zündfunken gezündet werden und mit definierter Flammfront abbrennen (bei der Weiterentwicklung des Ottomotors mit homogener Kompressionszündung entfällt teilweise der Zündfunken).
Man kann zwischen verschiedenen Oktanzahlen unterscheiden:
- ROZ Research-Oktanzahl
- MOZ Motor-Oktanzahl
- SOZ Straßen-Oktanzahl
- FOZ Front-Oktanzahl, oft auch mit ROZ100 °C bezeichnet
Oktanzahl und Wirkungsgrad
Die Erhöhung der Oktanzahl ging einher mit der Weiterentwicklung der Verbrennungsmotoren. Früher wurde das Rohbenzin/Naphtha, so wie es bei der Primärdestillation anfällt, als Kraftstoff eingesetzt. Die nach dem 2. Weltkrieg entwickelten Motoren benötigen klopffesteren Kraftstoff. Durch stärkere Verdichtung lässt sich der Wirkungsgrad des Motors erhöhen, und damit die spezifische Leistung. Verwendung von Kraftstoff mit höherer Oktanzahl als der, für die der Motor konstruiert ist, bewirkt jedoch keine Leistungssteigerung und keine Veränderung im Verbrennungsverhalten.
Ab 1924 in den USA beziehungsweise 1936 in Deutschland bis 1996 wurde Ottokraftstoffen Tetraethylblei zugesetzt, um die Oktanzahl zu erhöhen. Das Blei dient nicht der Schmierung der Ventile/Ventilsitze, sondern verhindert u. a. als Radikalenfänger eine unkontrollierte Selbstentzündung des Kraftstoff-Luftgemisches bei der Verdichtung. Danach wurde bleifreies Benzin vorgeschrieben, da Blei bei Dauereinwirkung stark toxische Wirkung hat.
Die unterschiedliche Oktanzahl der an den Tankstellen erhältlichen Kraftstoffe kommt durch die unterschiedliche Verwendung der in einer Erdölraffinerie produzierten Komponenten zustande. So enthält Superbenzin mehr hochwertige Komponenten als Normalbenzin. Hochwertige Komponenten durchlaufen mehr Verarbeitungsschritte, was Auswirkung auf den Endpreis hat.
Auch wird oft Methyl-tertiär-butylether (MTBE) zur Erhöhung der Klopffestigkeit zugegeben, jedoch nur bis zu 15 %. Bei höheren Zugaben würde Wassereintritt in den Tank zur Entmischung von Benzin und MTBE führen, weil MTBE sich eher mit Wasser mischt als mit Benzin. Die Halbwertzeit von MTBE in der Atmosphäre liegt bei 3 Tagen. Wegen schlechter Abbaubarkeit in Wasser ist MTBE als wassergefährdend (WGK 1 = schwach wassergefährdend) eingestuft. Heutzutage wird immer öfter auf Ethyl-tertiär-butylether (ETBE) zurückgegriffen. ETBE bietet gegenüber MTBE aufgrund seines höheren Siedepunkts einige Vorteile und ist, da es aus Bio-Ethanol gewonnen wird, als Kraftstoffadditiv steuerlich interessant. Wie MTBE hat auch ETBE den Nachteil, dass es sich im Grundwasser nur schlecht abbauen lässt.
Geschichte
Seit etwa 1912 wurde das unregelmäßige Zünden bei Motoren beobachtet. Das Geräusch wurde als "Klopfen" bezeichnet, welches den Motor dann auch relativ schnell zerstörte. Zunächst wurden als Ursache die neuen batteriebetriebenen, elektrischen Zündanlagen angenommen. Bei genaueren Untersuchungen stellte sich heraus, dass das Klopfen mit der Kompressionsrate zusammenhing, welche die Motoringenieure erhöhten, um mehr Leistung zu bekommen. Es wurden verschiedene Messmethoden probiert, aufgrund der vielen Variablen (Kraftstoffzusammensetzung, Zündzeitpunkt, Verdichtung, Motortemperatur, Zylinderbauweise...) setzte sich allerdings keines der Messverfahren durch.
1927 kam Graham Edgar auf die Idee, dass man Reinstoffe als Referenzsysteme verwenden könnte. Man benötigte zwei Stoffe (einen stark klopfenden und einen klopffesten), welche in großer Reinheit und ausreichenden Mengen hergestellt werden konnten. Des Weiteren sollten diese beiden Stoffe recht ähnliche Eigenschaften aufweisen (Schmelz- und Siedepunkt, Dichte und Verdampfungseigenschaften). n-Heptan konnte destillativ in großer Reinheit gewonnen werden und hatte sehr schlechte Klopfeigenschaften. 2,2,4-Trimethylpentan ("iso-Oktan") konnte durch Anlagerung von Isobuten an Isobutan synthetisiert und destillativ gereinigt werden und hatte sehr gute Klopfeigenschaften.
Die damals erhältlichen Kraftstoffe hatten Klopfverhalten, welche durch Gemische von 40:60 bis 60:40 an i-Oktan:n-Heptan dargestellt werden konnten. Sie ließen sich mit diesem System also gut charakterisieren. Damit hatte das Benzin vor 1930 Oktanzahlen von 40 bis 60.
Oktanzahlen
In Europa wird an den Tankstellen nur die ROZ angegeben, in den USA wird meist die "Zapfsäulen-Oktanzahl" mit (ROZ+MOZ):2 errechnet. Die meisten Anbieter werben mit der Research-Oktanzahl, da diese Werte höher und einfacher zu ermitteln sind als die Motor-Oktanzahl.
Research (Erforschte)-Oktanzahl (ROZ)
Die ROZ wird mit dem Einzylinder-CFR-Prüfverfahren ermittelt.
Sowohl die MOZ und ROZ werden im CFR-Motor (veränderliches Verdichtungsverhältnis) durch Vergleich mit einem Bezugskraftstoff aus Isooktan (OZ = 100) und Normalheptan (OZ = 0) ermittelt. Der Volumenanteil an Isooktan des Bezugskraftstoffes, der die gleiche Klopfintensität hat wie der zu prüfende Kraftstoff, ist dessen Oktanzahl. Die MOZ ist meist niedriger als die ROZ, da sie bei höherer Drehzahl und Gemischvorwärmung auf ca. 149 °C ermittelt wird.
Die nach der Research-Methode (DIN EN ISO 5164) ermittelte ROZ soll das Klopfverhalten bei geringer Motorlast und niedrigen Drehzahlen beschreiben.
Motor-Oktanzahl (MOZ)
Die mit der Motor-Methode (DIN EN ISO 5163) ermittelte "Motor-Oktanzahl" soll das Verhalten bei hoher Motorlast und hoher thermischer Belastung beschreiben. Hier werden beim Norm-Motor härtere Bedingungen angelegt, nämlich statt 600 U/min nun 900 U/min, eine automatisch verstellbare Zündeinstellung sowie eine Gemischvorwärmung auf immerhin 149 °C. Dadurch ist die MOZ immer kleiner oder gleich der ROZ.
Oktanzahlen werden im CFR-Motor oder BASF-Motor durch Vergleich mit einem Bezugskraftstoff aus Isooktan (OZ = 100) und Normalheptan (OZ = 0) ermittelt. Der Volumenanteil Isooktan des Bezugskraftstoffes, der die gleiche Klopfintensität hat wie der zu prüfende Kraftstoff, ist dessen Oktanzahl.
Die Differenz zwischen ROZ - MOZ wird als "Empfindlichkeit" (sensitivity) bezeichnet und bringt die Temperaturabhängigkeit der Oktanzahl zum Ausdruck. Eine hohe Empfindlichkeit bedeutet, der Kraftstoff reagiert empfindlich auf höhere thermische Belastung.
Straßenoktanzahl (SOZ)
Die Vergleichswerte werden unter realistischen Bedingungen auf der Straße gemessen. Dabei geht man an die Leistungsgrenze des Kraftstoffs: gleich bleibend hohe Drehzahl bei Vollgas. Damit der SOZ-Wert vergleichbar ist, unterliegt er einer Norm.
Front-Oktanzahl (FOZ)
Die FOZ beschreibt die Oktanzahl der bis ca. 100 °C siedenden Komponenten des Kraftstoffs. Es wird dabei die Research-Oktanzahl der bis 100 °C verdampften Komponenten des Kraftstoffs ermittelt (daher auch die Bezeichnung ROZ100 °C). Die FOZ beschreibt somit das Verhalten des Kraftstoffs bei niedrigen Motortemperaturen kurz nach dem Starten des Motors (Kaltstartverhalten).
Oktanzahlen einiger Reinstoffe
n-Heptan 0 ROZ 0 MOZ (definiert) i-Oktan 100 ROZ 100 MOZ (definiert) n-Butan 94 ROZ 94 MOZ i-Butan 102 ROZ 98 MOZ n-Pentan 58 ROZ 58 MOZ i-Pentan 94 ROZ 93 MOZ Cyclopentan 103 ROZ 86 MOZ n-Hexan 25 ROZ 26 MOZ 2,3-Dimethylbutan 104 ROZ 95 MOZ Cyclohexan 83 ROZ 77 MOZ Benzol 99 ROZ 91 MOZ Toluol 110 ROZ 103 MOZ o-Xylol 120 ROZ 102 MOZ m-Xylol 118 ROZ 115 MOZ p-Xylol 117 ROZ 111 MOZ Ethylbenzol 107 ROZ 98 MOZ Oktanzahlbedarf eines Ottomotors
Der Oktanzahlbedarf beschreibt den Bedarf an Klopffestigkeit des Kraftstoffes eines Motors, damit es nicht zu ungewollten Selbstzündungen kommt. Der Oktanzahlbedarf hängt dabei von den Betriebsbedingungen des Motors (Drehzahl, Temperatur, Brennraumgeometrie, Verdichtungsverhältnis, Gemischzusammensetzung, Luftdruck, Luftfeuchtigkeit, Zündzeitpunkt, Ablagerungen etc.) ab. Damit der Motor störungsfrei arbeitet, muss daher das Oktanzahlangebot des Kraftstoffes so hoch sein, dass der Oktanzahlbedarf des Motors auch bei den ungünstigen Betriebsbedingungen noch erfüllt wird – z. B. kann der Oktanzahlbedarf eines Motors bei Vollgas um 10 Oktanzahlen höher liegen als im Leerlauf. Die Verwendung von oberhalb der Motorspezifikation liegenden Oktanzahlen bringt im Regelfall keine Vorteile. Moderne Motoren mit elektronischer Kennfeldzündung in Kombination mit Klopfsensoren können mit verschiedenen Oktanzahlen bei reduzierter Leistung gefahren werden.
Oktanzahlen von Ottokraftstoffen
Normal mindestens 91 ROZ 82,5 MOZ Super / Bleifrei 95 mindestens 95 ROZ 85 MOZ SuperPlus / Bleifrei 98 mindestens 98 ROZ 88 MOZ (meist schon auf 100,0 ROZ umgestellt) Shell V-Power 100+ mindestens 100 ROZ 88 MOZ Aral / BP ultimate mindestens 100 ROZ 88 MOZ MoGas mindestens 98 ROZ 88 MOZ (Für Flugbetrieb zugelassenes Superbenzin) 100LL (AvGas/Flugbenzin) 100 MOZ Autogas 103 bis 111 ROZ Erdgas 120 bis 130 ROZ E85 (Kraftstoff mit 85% Ethanol) mindestens 104 ROZ Rennbenzin gibt es mit 120 ROZ Formel 1 Benzin maximal 102 ROZ (früher bis 108 ROZ) In Österreich hat die OMV AG im Jahr 2004 Super Plus mit 100 ROZ eingeführt. In die Schweiz führen BP auch Super Plus mit 100 ROZ ein. Dies ist auch in Deutschland in vielen Fällen bereits umgestellt.
Literatur
- Karl-Heinz Dietsche, Thomas Jäger, Robert Bosch GmbH: Kraftfahrtechnisches Taschenbuch. 25. Auflage, Friedr. Vieweg & Sohn Verlag, Wiesbaden, 2003, ISBN 3-528-23876-3
- Peter A. Wellers, Hermann Strobel, Erich Auch-Schwelk: Fachkunde Fahrzeugtechnik. 5. Auflage, Holland+Josenhans Verlag, Stuttgart, 1997, ISBN 3-7782-3520-6
- Hans-Hermann Braess, Ulrich Seiffert: Vieweg Handbuch Kraftfahrzeugtechnik. 2. Auflage, Friedrich Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden, 2001, ISBN 3-528-13114-4
- Kurt-Jürgen Berger, Michael Braunheim, Eckhard Brennecke: Technologie Kraftfahrzeugtechnik. 1. Auflage, Verlag Gehlen, Bad Homburg vor der Höhe, 2000, ISBN 3-441-92250-6
Siehe auch
- Cetanzahl bei Dieselkraftstoff
- Methanzahl bei gasförmigem Kraftstoff
Weblinks
Wikimedia Foundation.