Wilkinson-Katalysator

Wilkinson-Katalysator
Strukturformel
Strukturformel des Wilkinson-Katalysators
Allgemeines
Name Wilkinson-Katalysator
Andere Namen

Chlorotris(triphenylphosphin)
rhodium(I) (IUPAC)

Summenformel C54H45ClP3Rh
CAS-Nummer 14694-95-2
Kurzbeschreibung

dunkelroter, geruchloser, Feststoff[1]

Eigenschaften
Molare Masse 925,24 g·mol−1
Aggregatzustand

fest

Schmelzpunkt

157 °C[1]

Löslichkeit

schlecht in Wasser[1]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [2]
keine GHS-Piktogramme
H- und P-Sätze H: keine H-Sätze
EUH: keine EUH-Sätze
P: keine P-Sätze
EU-Gefahrstoffkennzeichnung [1]
keine Gefahrensymbole
R- und S-Sätze R: keine R-Sätze
S: 22-24/25
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

Vorlage:Infobox Chemikalie/Summenformelsuche vorhanden

Der Wilkinson-Katalysator ist ein in der organischen Chemie verwendeter Homogenkatalysator mit der Summenformel C54H45ClP3Rh. Es handelt sich hierbei um einen Rhodiumkomplex, der zur Hydrierung, Hydroformylierung, Hydrosilylierung und zur Isomerisierung von Allylgruppen zu Propenylgruppen Anwendung findet. Der Wilkinson-Katalysator ist nach seinem Entwickler, dem Nobelpreisträger Geoffrey Wilkinson, benannt.

Inhaltsverzeichnis

Struktur und Synthese

Beim Wilkinson-Katalysator handelt es sich um einen quadratisch-planaren Rhodium(I)-komplex, der einen Chloro- und drei Triphenylphosphin-Liganden (PPh3) trägt. Es handelt sich um einen 16-Valenzelektronenkomplex. Er lässt sich durch Substitution von Triphenylphosphan an Rhodiumtrichlorid in siedendem Ethanol synthetisieren. Ethanol wirkt hierbei sowohl als Lösungsmittel als auch als Reduktionsmittel (Reduktion von Rh(III) zu (Rh(I)).[3]

\mathrm{RhCl_3(H_2O)_3 + CH_3CH_2OH + 3 \ PPh_3 \longrightarrow}

\mathrm{RhCl{(PPh_3)}_{3} + CH_3CHO + 2 \ HCl + 3 \ H_2O}

Katalysezyklus

Die Wilkinson-Hydrierung wird zur Hydrierung von Alkenen mit Wasserstoff genutzt. Entscheidend ist hierbei die Labilität der gebundenen Phosphinliganden, durch deren Abspaltung freie Koordinationsstellen geschaffen werden. Im ersten Schritt spaltet sich ein Phosphinligand vom Katalysator ab. Dann addiert Wasserstoff oxidativ an die zuvor gebildete trigonal-planare 14-Valenzelektronenspezies. Hierbei bildet sich ein trigonal-bipyramidale Komplex. Die Oxidationsstufe ändert sich von I auf III. Das eingesetzte Alken koordiniert dann zunächst side-on am Metall. Anschließend findet die Insertion des Alkens unter Hydrierung statt. Es bildet sich wieder ein trigonal-bipyramidaler Komplex, der nun einen end-on-gebundenen Alkylrest trägt. Die Hydrierung durch den zweiten gebundenen Wasserstoff führt letztlich zur Abspaltung (reduktive Eliminierung) des Alkans unter Rückbildung der Katalysatorspezies.[4]

Katalysezyklus der Wilkinson-Hydrierung

Durch den Wilkinson-Katalysator können selektiv endständige Doppelbindungen hydriert werden. Die Reaktion läuft an diesen so viel schneller ab, dass eine weitere im Molekül vorhandene nicht-endständige Doppelbindung nicht angegriffen wird. Bei sterisch anspruchsvollen Substituenten an der Doppelbindung sowie bei vierfach substituierten Doppelbindungen findet meist überhaupt keine Hydrierung statt.

Sterische Hinderung bei der Hydrierung mit einem Wilkinson-Katalysator

Asymmetrische Hydrierungen

Der Wilkinson-Katalysator kann auch zur asymmetrischen Synthese chiraler Produkte eingesetzt werden. Hierzu werden anstelle der achiralen Triphenylphosphinliganden chirale Phosphine wie beispielsweise DIPAMP oder DIOP verwendet. So kann beispielsweise das Chiralitätszentrum des medizinisch wichtigen Aminosäure L-DOPA über eine asymmetrische Wilkinson-Hydrierung mit DIPAMP als chiralem Ligand aufgebaut werden.[5]

Asymmetrische Hydrierung mit dem Wilkinson-Katalysator

Weblinks

 Commons: Wilkinson-Katalysator – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

  1. a b c d Eintrag zu CAS-Nr. 14694-95-2 in der GESTIS-Stoffdatenbank des IFA, abgerufen am 2.12.2007 (JavaScript erforderlich)
  2. Datenblatt Tris(triphenylphosphine)rhodium(I) chloride bei Sigma-Aldrich, abgerufen am 29. Mai 2011.
  3. J. A. Osborn, F.H. Jardine,J. F. Young, G. Wilkinson, Journal of the Chemical Society A. 1966, S. 1711-1732
  4. Beyer/Walter: Lehrbuch der Organischen Chemie. Hirzel Verlag, 23. Auflage. 1998, S. 406f.
  5. Christen und Fritz Vögtle: Organische Chemie Bd. 2, Otto Salle Verlag, 2. Auflage, 1996, S. 411.

Wikimedia Foundation.

Игры ⚽ Поможем сделать НИР

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Wilkinson-Katalysator — Wil|kin|son Ka|ta|ly|sa|tor [ wɪlkɪnsən; nach dem brit. Chemiker G. Wilkinson (1921–1996)]; systematisches Syn.: Chlorotris(triphenylphosphin)rhodium(I): RhCl[P(C6H5)3]3; roter krist. Homogenkatalysator für die Hydrierung von… …   Universal-Lexikon

  • Wilkinson — steht für Wilkinson Sword, britischer Hersteller von Rasierklingen, Essbesteck und Gartengeräten sowie Schwertern Wilkinson County (Georgia) Wilkinson County (Mississippi) Wilkinson Katalysator Wilkinson ist der Familienname folgender Personen:… …   Deutsch Wikipedia

  • Wilkinson (Name) — Wilkinson steht für Wilkinson Sword, britischer Hersteller von Rasierklingen, Essbesteck und Gartengeräten sowie Schwertern (bis September 2005) Wilkinson County (Georgia) Wilkinson County (Mississippi) Wilkinson ist der Familienname folgender… …   Deutsch Wikipedia

  • Crabtree-Katalysator — Strukturformel Allgemeines Name Crabtree Katalysator Andere Namen …   Deutsch Wikipedia

  • Geoffrey Wilkinson — Sir Geoffrey Wilkinson (* 14. Juli 1921 in Springside, Yorkshire, Großbritannien; † 26. September 1996 in London) war ein britischer Chemiker. Struktur von Ferrocen Ab 1955 hatte er den Lehrstuhl für anorganische Chemie am Imperial College London …   Deutsch Wikipedia

  • Rhodium — Eigenschaften …   Deutsch Wikipedia

  • Eley - Rideal - Mechanismus — Als Katalyse (griechisch κατάλυσις, katálysis – die Auflösung, Abschaffung, Aufhebung; ursprünglich von: κατά = „(da)bei“ (örtl./zeitl.) und λύσις = „Auflösung, Zerfall“, also: „örtlich und zeitlich beim Zerfall (anwesend)“, wörtlich: „der Bei… …   Deutsch Wikipedia

  • Hydrierung — Unter Hydrierung versteht man in der Chemie die Addition von Wasserstoff an andere chemische Elemente oder Verbindungen. Eine in der organischen Chemie sehr häufig durchgeführte chemische Reaktion ist die addierende Hydrierung von Kohlenstoff… …   Deutsch Wikipedia

  • Katalysieren — Als Katalyse (griechisch κατάλυσις, katálysis – die Auflösung, Abschaffung, Aufhebung; ursprünglich von: κατά = „(da)bei“ (örtl./zeitl.) und λύσις = „Auflösung, Zerfall“, also: „örtlich und zeitlich beim Zerfall (anwesend)“, wörtlich: „der Bei… …   Deutsch Wikipedia

  • Katalytisch — Als Katalyse (griechisch κατάλυσις, katálysis – die Auflösung, Abschaffung, Aufhebung; ursprünglich von: κατά = „(da)bei“ (örtl./zeitl.) und λύσις = „Auflösung, Zerfall“, also: „örtlich und zeitlich beim Zerfall (anwesend)“, wörtlich: „der Bei… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”