- Wishart-Verteilung
-
Die Wishart-Verteilung ist eine Wahrscheinlichkeitsverteilung. Sie ist die multivariate Entsprechung der χ2-Verteilung.
Für die Erläuterung wird zum besseren Verständnis zunächst von einer Zufallsvariablen ausgegangen: Man betrachtet eine standardnormalverteilte Zufallsvariable X, also mit dem Erwartungswert 0 und der Varianz 1. Es liegen von dieser Variablen n Beobachtungen oder Realisationen xi (i=1, ... , n) vor. Da die Realisationen unabhängig voneinander stattfinden, interpretiert man sie als eine Folge von n standnormalverteilten Zufallsvariablen Xi. Die Quadratsumme dieser Zufallsvariablen
ist dann χ2-verteilt mit n Freiheitsgraden. Fasst man die Beobachtungen xi in einem Vektor x mit n Elementen zusammen, kann man auch y darstellen als die Norm
,
wobei xT ein Zeilenvektor ist.
Es werden nun p viele verschiedene Zufallsvariablen Xj betrachtet. Diese Zufallsvariablen sind gemeinsam normalverteilt mit dem Erwartungswert 0 und der Kovarianz-Matrix Σ. Es liegen für jede Zufallsvariable jeweils n viele Beobachtungen vor. Man kann nun diese Daten in einer (nxp)-Matrix X zusammenfassen:
.
Analog zu oben bildet man die symmetrische Matrix
mit den Elementen
.
Diese Matrix W ist nun Wishart-verteilt mit n Freiheitsgraden.
Eigenschaften der Wishart-Verteilung
Wie die χ2-Verteilung ist auch die Wishart-Verteilung reproduktiv: Die Summe von p Wishart-verteilten Zufallsvariablen mit n Freiheitsgraden und p Zufallsvariablen mit m Freiheitsgraden ist wieder insgesamt Wishart-verteilt mit m+n Freiheitsgraden.
Diskrete univariate VerteilungenDiskrete univariate Verteilungen für endliche Mengen:
Benford | Bernoulli | beta-binomial | binomial | kategorial | hypergeometrisch | Rademacher | Zipf | Zipf-MandelbrotDiskrete univariate Verteilungen für unendliche Mengen:
Boltzmann | Conway-Maxwell-Poisson | negativ binomial | erweitert negativ binomial | Compound-Poisson | diskret uniform | discrete-Phase-Type | Gauss-Kuzmin | geometrisch | logarithmisch | parabolisch-fraktal | Poisson | Poisson-Gamma | Skellam | Yule-Simon | Zeta
Wikimedia Foundation.