- Diskrete Gleichverteilung
-
Die diskrete Gleichverteilung ist eine statistische Wahrscheinlichkeitsverteilung (Gleichverteilung). Eine diskrete Zufallsvariable X mit endlich vielen Ausprägungen hat eine diskrete Gleichverteilung, wenn die Wahrscheinlichkeit für jede ihrer Ausprägungen gleich ist.
Inhaltsverzeichnis
Wahrscheinlichkeitsfunktion
Die Wahrscheinlichkeitsfunktion der diskreten Gleichverteilung ist:
und damit genügt sie der Verteilungsfunktion
- .
Im Fall xk = k ergibt das
Der Erwartungswert ist:
Im Fall xk = k besitzt die diskrete Gleichverteilung den Erwartungswert (nach der Gaußschen Summenformel)
und die Varianz
- .
Typischerweise findet diese Wahrscheinlichkeitsverteilung Anwendung bei Zufallsexperimenten, deren Ergebnisse gleichhäufig sind. Wenn man (mit oder ohne Begründung) annimmt, dass die n Elementarereignisse gleichwahrscheinlich sind, spricht man von einem Laplace-Experiment. Gängige Beispiele für Laplace-Experimente sind der Laplace-Würfel und die Laplace-Münze. Siehe auch Stetige Gleichverteilung, Laplace-Formel.
Beispiel
Sechsseitiger Laplace-Würfel
Das Zufallsexperiment ist: Ein Würfel wird einmal geworfen. Die möglichen Ausprägungen der Zufallsvariablen X sind: . Nach der klassischen Wahrscheinlichkeitsauffassung ist die Wahrscheinlichkeit für jede Ausprägung gleich. Sie hat dann die Wahrscheinlichkeitsfunktion
mit dem Erwartungswert für xi = i und n = 6:
- E(X) = 7 / 2 = 3,5
und der Varianz
- .
Entscheidungsproblem des Marketing
Eine Anwendung in der Praxis könnte etwa ein Problem des Operations Research (Marketing) sein. Eine Unternehmung möchte ein neues Produkt auf dem Markt einführen
Man versucht, den Erfolg des Produkt quantitativ vorauszuschätzen. Es wird vereinfachend von 5 verschiedenen verkauften Stückzahlen ausgegangen: 0, 1.000, 5.000, 10.000 und 50.000. Da über die Wahrscheinlichkeit der einzelnen Absatzzahlen keine verläßliche Schätzung möglich ist, verwendet man der Einfachheit halber gleiche Wahrscheinlichkeiten.
Man kann nun den Entscheidungsprozess, d.h. die individuelle Kaufentscheidung objektivieren, also den erwarteten durchschnittlichen Absatz ermitteln und sich überlegen, etwa anhand von Entscheidungsbäumen, inwieweit erhöhte Werbeausgaben die Absatzzahlen erhöhen könnten.
Abgrenzung
Die diskrete Gleichverteilung wird oft auch nach Pierre-Simon Laplace benannt (Laplace-Würfel). Sie hat jedoch nichts mit der stetigen Laplace-Verteilung zu tun.
Weblinks
- Universität Konstanz – Interaktive Animation
Diskrete univariate VerteilungenDiskrete univariate Verteilungen für endliche Mengen:
Benford | Bernoulli | beta-binomial | binomial | kategorial | hypergeometrisch | Rademacher | Zipf | Zipf-MandelbrotDiskrete univariate Verteilungen für unendliche Mengen:
Boltzmann | Conway-Maxwell-Poisson | negativ binomial | erweitert negativ binomial | Compound-Poisson | diskret uniform | discrete-Phase-Type | Gauss-Kuzmin | geometrisch | logarithmisch | parabolisch-fraktal | Poisson | Poisson-Gamma | Skellam | Yule-Simon | Zeta
Wikimedia Foundation.
Schlagen Sie auch in anderen Wörterbüchern nach:
Gleichverteilung — Der Begriff Gleichverteilung stammt aus der Wahrscheinlichkeitstheorie und beschreibt eine Wahrscheinlichkeitsverteilung mit bestimmten Eigenschaften. Im diskreten Fall tritt jeder mögliche Zustand mit der gleichen Wahrscheinlichkeit ein, im… … Deutsch Wikipedia
Diskrete Verteilung — In der Wahrscheinlichkeitstheorie gibt die Wahrscheinlichkeitsverteilung an, wie sich die Wahrscheinlichkeiten auf die möglichen Zufallsergebnisse, insbesondere die möglichen Werte einer Zufallsvariable, verteilen. Die… … Deutsch Wikipedia
Diskrete Wahrscheinlichkeitsverteilung — In der Wahrscheinlichkeitstheorie gibt die Wahrscheinlichkeitsverteilung an, wie sich die Wahrscheinlichkeiten auf die möglichen Zufallsergebnisse, insbesondere die möglichen Werte einer Zufallsvariable, verteilen. Die… … Deutsch Wikipedia
Stetige Gleichverteilung — Dichtefunktion der Gleichverteilung für a = 4,b = 8 (blau), a = 1,b = 18 (grün) und a = 1,b = 11 (rot) Die stetige Gleichverteilung, auch Rechteckverteilung oder Uniformverteilung genannt, ist eine stetige Wahrscheinlichkeitsverteilu … Deutsch Wikipedia
Laplace-Experiment — Die diskrete Gleichverteilung ist eine statistische Wahrscheinlichkeitsverteilung (Gleichverteilung). Eine diskrete Zufallsvariable X mit endlich vielen Ausprägungen hat eine diskrete Gleichverteilung, wenn die Wahrscheinlichkeit für jede ihrer… … Deutsch Wikipedia
Laplace-Würfel — Die diskrete Gleichverteilung ist eine statistische Wahrscheinlichkeitsverteilung (Gleichverteilung). Eine diskrete Zufallsvariable X mit endlich vielen Ausprägungen hat eine diskrete Gleichverteilung, wenn die Wahrscheinlichkeit für jede ihrer… … Deutsch Wikipedia
Liste der Wahrscheinlichkeitsverteilungen — Es gibt unzählige Möglichkeiten, wie eine Zufallsvariable verteilt sein kann. Hier soll ein Überblick über die bekanntesten Wahrscheinlichkeitsverteilungen gegeben werden. Inhaltsverzeichnis 1 Eigenschaften 1.1 Verteilungsfunktion 1.1.1 Diskrete… … Deutsch Wikipedia
Liste von Wahrscheinlichkeitsverteilungen — Es gibt unzählige Möglichkeiten, wie eine Zufallsvariable verteilt sein kann. Hier soll ein Überblick über die bekanntesten Wahrscheinlichkeitsverteilungen gegeben werden. Inhaltsverzeichnis 1 Eigenschaften 1.1 Verteilungsfunktion 1.1.1 Diskrete… … Deutsch Wikipedia
Überblick Wahrscheinlichkeitsverteilungen — Es gibt unzählige Möglichkeiten, wie eine Zufallsvariable verteilt sein kann. Hier soll ein Überblick über die bekanntesten Wahrscheinlichkeitsverteilungen gegeben werden. Inhaltsverzeichnis 1 Eigenschaften 1.1 Verteilungsfunktion 1.1.1 Diskrete… … Deutsch Wikipedia
Rechteckverteilung — Die stetige Gleichverteilung, auch Rechteckverteilung oder Uniformverteilung genannt, ist eine stetige Wahrscheinlichkeitsverteilung. Sie hat auf einem Intervall (a,b) eine konstante Wahrscheinlichkeitsdichte. Dies ist gleichbedeutend damit, dass … Deutsch Wikipedia