- Meereswärmekraftwerk
-
Ein Meereswärmekraftwerk gewinnt elektrische Energie aus dem Temperaturunterschied zwischen kalten und warmen Wassermassen in unterschiedlichen Tiefen der Meere. International gebräuchlich für diese Art der Erneuerbaren Energie ist die Abkürzung OTEC (englisch Ocean Thermal Energy Conversion), auch kann die Bezeichnung ozeanothermisches Gradient-Kraftwerk verwendet werden. Jacques-Arsène d'Arsonval lieferte im Jahr 1881 die theoretischen Grundlagen für diese Art der Energiewandlung. Allerdings konnte sich dieser Kraftwerkstyp nicht durchsetzen. Bis auf einige kleinere Versuchsanlagen bestehen bzw. bestanden keine Meereswärmekraftwerke, und dieser Kraftwerkstyp besitzt für die Energiegewinnung keine praktische Bedeutung.
Inhaltsverzeichnis
Allgemeines
Das Wasser an der Oberfläche der Ozeane besitzt eine höhere Temperatur als das Wasser in tieferen Schichten. Dieses thermale Gefälle (thermaler Gradient) macht sich das Meereswärmekraftwerk zu Nutze. Wenn der Unterschied zwischen den oberen (0–50 m) und den unteren Schichten (ab 600–1000 m) des Wassers mehr als 20° C beträgt, kann ein Kreislauf in Gang gesetzt werden, der in der Lage ist, Energie, beispielsweise an einen Generator, abzugeben.
Beachtenswert ist, dass ein Meereswärmekraftwerk im Vergleich zu anderen alternativen Stromerzeugern diesen ständig produzieren kann und nicht von der Tageszeit oder anderen veränderlichen Faktoren abhängig ist. Reale Wirkungsgrade liegen in der Größenordnung von drei Prozent, wobei die Energiequelle – das warme Meerwasser – meist im Überschuss und kostenlos zur Verfügung steht und sich selbstständig durch die Sonneneinstrahlung erneuert. Bei einer Wassertemperatur von 6 und 26 °C ist theoretisch ein Wirkungsgrad von 6,7 % erreichbar. Die technische Umsetzung ist jedoch immer mit Wirkungsgradverlusten behaftet.
Die praktische Leistung dieser Kraftwerke wird durch die Wassermenge bestimmt, die durch den Kreislauf genutzt wird. Dabei wird eine Leistung von 100 Megawatt (MW) für den geschlossenen und etwa 2,5 MW für den offenen Kreislauf als obere technisch sinnvolle Grenze angesehen. Beim 100 MW-Kraftwerk würden etwa 200 Kubikmeter Wasser pro Sekunde durch eine Rohrleitung mit der Nennweite von etwa 11 Meter zum Kraftwerk gefördert werden. Dazu kommen noch einmal 400 m³ warmes Oberflächenwasser pro Sekunde. Das entspricht etwa 1/5 des Nilstromes in das Mittelmeer. Im offenen Kreislauf bildet die Größe der Turbine das begrenzende Element.
Der derzeit größte Kostenfaktor (bis zu 75 %) für Anlagen dieser Dimension ist die Rohrleitung, in der das Tiefenwasser an die Oberfläche gefördert wird. Sie würde aus glasfaserverstärktem Kunststoff oder armiertem Beton gefertigt werden. Sofern die Pumpen am unteren Ende der Leitung angebracht werden, könnte auch eine Schlauchleitung aus flexiblerem kostengünstigeren Kunststoff verwendet werden.
Der Aufwand und die gewaltige Größe der technischen Anlagen im Verhältnis zur Energieausbeute ist der Hauptgrund, der eine kommerzielle Anwendung oder eine größere Verbreitung dieses Kraftwerkstyps bisher verhinderte.
Funktionsprinzipien
Meereswärmekraftwerke (zu denen auch Eiskraftwerke gehören, siehe unten) funktionieren nach dem physikalischen Prinzip eines Niederenthalpie-Clausius-Rankine-Kreisprozesses. Die Funktion eines Meereswärmekraftwerkes ist in zwei verschiedenen Kreislaufsystemen möglich. Beide Systeme können auch kombiniert werden.
Geschlossener Kreislauf
Bei einem Meereswärmekraftwerk mit geschlossenem Kreislauf wird in einem Organic Rankine Cycle warmes Oberflächenwasser gepumpt, welches ein bei niedriger Temperatur siedendes Arbeitsmedium in einem Wärmeübertrager zum Verdampfen bringt. Das verdampfte Arbeitsmedium wird durch eine an einen Generator angeschlossene Turbine geleitet, in der ein Teil der Wärme in Bewegungsenergie umgewandelt wird. Anschließend wird das Arbeitsmedium mit dem aus der Tiefe angepumpten kalten Wasser in einem weiteren Wärmeübertrager wieder in einem Kondensator verflüssigt und kann von neuem in den Verdampfer eingespeist werden.
Das Arbeitsprinzip entspricht dem eines Dampfkraftwerks, nur wird als Arbeitsmedium kein Wasserdampf verwendet. Es sind verschiedene Stoffe als Arbeitsmedium für ein Meereswärmekraftwerk denkbar, dessen Nutzung allerdings jeweils sowohl Vorteile als auch Nachteile mit sich bringt.
- Ammoniak ist leicht verfügbar und preisgünstig in der Produktion, aber giftig.
- Propan ist auch geeignet, aber hat eine niedrigere Wärmeleitfähigkeit und Verdampfungswärme als Ammoniak.
Offener Kreislauf
Ein Meereswärmekraftwerk mit offenem Kreislauf nutzt das warme Oberflächenwasser als Arbeitsmedium, das unter Vakuum verdampft wird. Der erzeugte Dampf treibt eine Turbine zur Stromerzeugung an. Anschließend wird der Dampf, der seinen anfänglichen Druck in der Turbine verliert, mit Hilfe von kaltem Tiefenwasser wieder im Kondensator verflüssigt. Wird hierfür ein Wärmeübertrager verwendet und ein direkter Kontakt vermieden, so entsteht entsalztes Süßwasser, das als Trinkwasser genutzt werden kann. In einer Vakuumkammer wird durch eine Vakuumpumpe ständig die im Wasser gelöste Luft abgesaugt. Somit wird sichergestellt, dass das Wasser ohne weitere Wärmezufuhr siedet und verdampft.
Hybrider Kreislauf
In einem hybriden Meereswärmekraftwerk werden beide vorgenannten Systeme kombiniert. Das warme Oberflächenwasser wird genutzt, um das Arbeitsmedium im geschlossenen Turbinenkreislauf zu verdampfen. Nachdem das Arbeitsmedium die Turbine passiert hat, wird es wiederum durch kaltes Tiefenwasser kondensiert und erneut in den Kreislauf eingebracht.
Das immer noch warme Oberflächenwasser wird nach der Wärmeabgabe an den Turbinenkreislauf in einer Vakuumkammer verdampft. Dieser Wasserdampf wird mit Hilfe des Kühlwassers kondensiert, wodurch Süßwasser gewonnen werden kann.
Eine andere Anordnung sieht zuerst die Vakuum-Verdampfung des warmen Seewassers vor. Dieser warme Wasserdampf wird anschließend genutzt, um das Arbeitsmedium des Turbinenkreislaufes zu verdampfen. Bei diesem Vorgang wird der Wasserdampf wiederum zu Süßwasser kondensiert. Das kalte Tiefenwasser wird nur zur Kondensation des Arbeitsmediums der Turbine genutzt.
Es sind auch weitere Kombinationen möglich. Eine favorisierte Bauform hat sich bei den wenigen Versuchsanlagen noch nicht durchgesetzt.
Barjot-Eiskraftwerk
Der Physiker Dr. Barjot entwickelte Anfang des 20sten Jahrhunderts ein Konzept, der die Temperaturunterschiede zwischen der Luft an den Polen von höchstens – 22°C und der des Wassers unterhalb der Eisdecke, das je nach Ansaugtiefe einen bis über 3°C warm ist, zu nutzen. Als Betriebsmittel schlägt er Butan (Siedepunkt: – 0,5°C) vor. Der Wärme-/Kältekreislauf bei dieser Technologie – auch unter dem Namen Polarkraftwerk bekannt, funktioniert invers zu bekannteren OTEC in tropischen Warmwasserregionen. Ein Wärmetauscher, der in die kalte Polarluft ragt, ist für die Kondensation des Arbeitsmediums verantwortlich, das von unter der Eisdecke heraufgepumpte Wasser für die Verdampfung. Da Butan praktisch nicht wasserlöslich ist, können Arbeitsmedium und Tiefenwasser im Verdampfer direkt vermischt werden. Berechnungen ergeben, daß bei einem theoretischen Wirkungsgrad von nur 4 % aus einem Kubikmeter Wasser mit einer Temperatur von + 2°C und einer Lufttemperatur von – 22°C dieselbe Energiemenge gewonnen werden kann, wie aus dem Fall dieses Kubikmeters aus einer Höhe von 1.200 m [1].
Geschichte/Versuchsanlagen
Bereits 1881 erdachte der französische Ingenieur Jacques-Arsène d'Arsonval ein Meereswärmekraftwerk mit geschlossenem Kreislauf. Es wurde von ihm jedoch nie getestet.
Im Jahre 1930 wurde an der Nordküste auf Kuba eine kleine Anlage mit offenem Kreislauf installiert, die ihren Betrieb jedoch schon nach wenigen Wochen einstellte. Sie wurde vom Franzosen Georges Claude, einem Freund und Schüler von Jacques Arsene d’Arsonval und Erfinder der Neonröhre, entworfen. Er ließ sich das Prinzip des offenen Kreislaufes patentieren. Die Pumpen benötigten eine größere Leistung als die 22 kW, die vom Generator abgegeben wurden. Gründe dafür waren der schlecht gewählte Standort und Probleme mit Algen. Das nächste Projekt von Claude, ein schwimmendes OTEC-Kraftwerk vor Brasilien, wurde von einem Sturm beendet, der eine Rohrleitung beschädigte. Der glücklose Erfinder starb praktisch bankrott von seinen OTEC-Versuchen.
In den 1970er Jahren förderte die US-Regierung die Erforschung des Meereswärmekraftwerkes mit 260 Millionen Dollar. Nach den Wahlen von 1980 wurde die staatliche Unterstützung jedoch stark gekürzt.
1979 wurde an Bord eines Frachtkahnes der US-Marine vor der Küste Hawaiis ein Experiment, das sogenannte „Mini-OTEC“, mit einem geschlossenen Kreislauf erfolgreich unter Beteiligung des Staates Hawaii und eines Industriepartners durchgeführt. Es dauerte etwa drei Monate. Die Generatorleistung betrug rund 50 kW, die Netzeinspeiseleistung ca. 10–17 kW. Es wurden etwa 40 kW für den Betrieb der Pumpen benötigt, die das 5,5 °C kalte Wasser mit einer Förderleistung von 10,2 Kubikmeter in der Minute aus 670 m Tiefe in einem 61 cm durchmessenden Polyethylenrohr und das 26 °C warme Oberflächenwasser ebenfalls mit einer Förderleistung von 10,2 m³/min zur Anlage förderten.
1980 wurden an Bord eines umgebauten Marine-Tankers, der vor Kawaihae an der Kona-Coast (Hawaii) verankert war, Komponenten eines geschlossenen Kreislaufes unter dem Projektnamen „OTEC-1“ getestet. Dabei sollten die Umweltauswirkungen eines im Meer verankerten Kraftwerks untersucht werden. Die Anlage konnte keine Elektrizität gewinnen.
1981 war für einige Monate ein kleines Meereswärmekraftwerk auf der Insel Nauru in Betrieb, welches von einem japanischen Konsortium zu Demonstrationszwecken errichtet worden war. Von den 100 kW Generatorleistung wurden rund 90 kW von den Pumpen benötigt. Die Gesamtbetriebsdauer betrug 1.230 Stunden.
Bereits 1983 wurde ein 40 MW-OTEC Versuchskraftwerk auf einer künstlichen Insel am Kahe Point vor der Küste von Oahu (Hawaii) geplant. Nachdem die Konstruktionsarbeiten 1984 abgeschlossen waren, konnten jedoch keine Geldmittel für den Bau gewonnen werden, da das OTEC-Kraftwerk sich nicht mit billigeren fossilen Kraftwerken vergleichen konnte. Nach weiterer Forschung speziell an den Verdampfern und Kondensatoren versprach man sich jedoch eine starke Senkung der Kosten eines OTEC-Kraftwerks mit geschlossenem Kreislauf.
In den Jahren 1993 bis 1998 war in Keahole Point, Hawaii ein experimentelles Meereswärmekraftwerk mit offenem Kreislauf erfolgreich in Betrieb. Die Generatorleistung betrug 210 kW, bei einer Oberflächenwassertemperatur von 26 °C und einer Tiefenwassertemperatur von 6 °C. Im Spätsommer bei sehr hohen Temperaturen konnten bis zu 250 kW vom Generator abgegeben werden. Dabei wurden etwa 200 kW von den Pumpen zur Förderung des Wassers verbraucht. Es wurden etwa 24.600 Kubikmeter kaltes Wasser durch ein 1 Meter durchmessendes Rohr aus rund 825 m Tiefe und 36.300 Kubikmeter warmes Oberflächenwasser an Land gepumpt. Ein kleiner Teil des erzeugten Dampfes wurde zur Gewinnung von entsalztem Wasser genutzt (etwa 20 l/min). Die Versuche ergaben, dass sich bei kommerziellen Kraftwerken ein Verhältnis von etwa 0,7 von Generatorleistung zu Netzeinspeiseleistung erreichen lassen würde.
Ein weiteres Kraftwerk in Hawaii mit einer Generatorleistung von 1,4 MW und einer Netzeinspeiseleistung von etwa 400 kW wurde entworfen, jedoch aufgrund fehlender Finanzierung nicht umgesetzt.
Mögliche Standorte
Gerade Länder in tropischen Bereichen, speziell Inselstaaten, müssen einen Großteil ihres Energiebedarfs z. B. in Form von Erdöl einführen. Meereswärmekraftwerke, noch dazu in Synergie mit den weiter unten beschriebenen zusätzlichen Anwendungen, stellen eine Option dar, diese Abhängigkeit zu verringern. Dies ist auch ein Grund, warum sich ein großer Teil der führenden Forschungsarbeiten auf den US-Bundesstaat Hawaii konzentrieren.
An Land
An Land gebaute Meereswärmekraftwerke haben den großen Vorteil, dass sie einfacher zu bauen sowie geschützter vor Stürmen sind als Off-Shore-Anlagen und die Weiterleitung der erzeugten Energie in das Stromnetz einfacher zu verwirklichen ist. Ebenso ist nur an Land eine sinnvolle Anwendung der unten beschriebenen weiteren Nutzungsmöglichkeiten gewährleistet.
Allerdings ist der Betrieb eines Meereswärmekraftwerkes an Land nur dort möglich, wo auch in Küstennähe eine Meerestiefe von an die 1000 m vorhanden ist. Dies ist nur in den karibischen und ozeanischen Inselstaaten sowie an Teilen der Küsten der südöstlichen USA, Westafrikas, Ostafrikas und einigen indonesischen Inseln der Fall.
Off-Shore
Meereswärmekraftwerke können auch fern der Küste (Off-Shore) angelegt werden, womit sich die Anzahl der infrage kommenden Meeresgebiete um ein Vielfaches vergrößert. Allerdings ist die Verankerung einer solchen Anlage auf dem Meeresgrund sehr aufwendig und teuer, ebenso sind Stürme und Tsunamis eine Gefahr. Auch ist es schwieriger, die erzeugte Energie in das Stromnetz einzuspeisen, da die Verlegung von Seekabeln nötig wird, die einen Teil der erzeugten Energie wieder absorbieren.
Es wird die Idee diskutiert, die in küstenfernen Meereswärmekraftwerken gewonnene Energie zu nutzen, um vor Ort Wasserstoff zu erzeugen, welcher dann mit Tankern abtransportiert werden kann.
Schwimmende Anlagen
Es liegen Pläne vor, schwimmende Meereswärmekraftwerke etwa zum Antrieb von großen Schiffen zu benutzen. Ob diese allerdings technisch zu realisieren sind, ist fraglich. Insbesondere die Stabilisierung der zum Anpumpen des Tiefenwassers bestimmten Leitungen stellt ein Problem dar.
Polarregion
Für das Barjot-Eiskraftwerk kommen Standort auf Inseln der Polarregion, sowie schwimmende, bzw. in der Eisdecke verankerte Plattformen in Frage. Die Wetterstation Myggbuka an der Ostküste Grönlands (1000 km nördlich von Reykjavik) notiert Temperatur-Monatsmittel von unter -15°C während der 6 Wintermonate im Jahr[2]. Die Entfernung zur Industrieregion Schottlands beträgt lediglich 2100 km und ist somit durch HGÜ-Technik überwindbar.
An der Nordküste Grönlands bietet sich durch die aufgrund der größeren auftretenden Temperaturdifferenzen realisierbaren Wirkungsgrade die Wasserstoff- oder Methansynthese an um, die erzeugte Energie zu speichern und zu transportieren.
Siehe auch
- Erneuerbare Energie
- Gezeitenkraftwerk
- Meeresenergie
- Meeresströmungskraftwerk
- Osmosekraftwerk
- Wellenkraftwerk
- Zukunftstechnologie
Einzelnachweise
- ↑ http://www.energyprofi.com/jo/index2.php?option=com_content&task=view&id=104&pop=1&page=0&Itemid=160
- ↑ http://www.globalbioclimatics.org/station/de-myggb.htm
Literatur
- William H. Avery, Chih Wu: Renewable Energy from the Ocean A Guide to OTEC. Oxford University Press, 1994, ISBN 0-19-507199-9.
- Patrick Takahashi, Andrew Trenka: Ocean Thermal Energy Conversion. John Wiley & Sons, 1996, ISBN 0-471-96009-8.
Weblinks
- nrel.gov/otec National Renewable Energy Laboratory (englisch)
- Webseite der Versuchsanlage auf Hawaii
- OTEC – Fact Sheet der Regierung von Hawaii (englisch)
- otecnews.or Aktuelle News rund um OTEC (englisch)
- Meereswärmekraftwerk (Temperaturgradient)
- Energieinfo.de
- Artikel bei g-o.de
- worldenergy.org. mit umfangreicher Liste von OTEC-Projekten (englisch)
- Arte Dokumentation: Stromquelle Meer 2006
Dieser Artikel wurde in die Liste der lesenswerten Artikel aufgenommen. Kategorien:- Wikipedia:Lesenswert
- Meereskraftwerkstyp
- Wärmetechnik
Wikimedia Foundation.