- Uran-Anreicherung
-
Mit Uran-Anreicherung wird – sprachlich ungenau – die Veränderung der Isotopenzusammensetzung von Natururan zugunsten des Isotops 235U bezeichnet. Natururan besteht zu etwa 99,3 % aus 238U und zu 0,7 % aus 235U. Unterschiedlich stark mit 235U angereichertes Uran dient als Kernbrennstoff für Kernreaktoren und Kernwaffen. Die Anreicherung ist ein Zweig der Uranwirtschaft.
Inhaltsverzeichnis
Verwendung des angereicherten Urans
235U ist – wie einige andere Nuklide mit ungerader Neutronenzahl – durch thermische Neutronen relativ gut spaltbar und das einzige bekannte natürlich vorkommende Nuklid, das zu einer Kernspaltungs-Kettenreaktion fähig ist. Während für Schwerwasser- und Graphit-moderierte Reaktoren auch Natururan zum Einsatz kommen kann, müssen Kernreaktoren der gängigsten Typen (Druckwasser- und Siedewasserreaktoren) mit Uran beschickt werden, dessen 235U-Gehalt auf mindestens etwa 3 % – in der Praxis bis zu 5 % – erhöht wurde. Für Kernwaffen ist eine sehr hohe Anreicherung erforderlich (typischerweise mindestens 85 %); dieses Urangemisch wird als hochangereichertes Uran (engl. highly enriched uranium, HEU) bezeichnet.
Anreicherungsprodukte
In einer Urananreicherungsanlage wird Natururan („Feed“) in zwei Fraktionen getrennt, von denen die eine („Product“) gegenüber dem Ausgangsstoff einen höheren, die andere („Tails“) einen niedrigeren Anteil an 235U besitzt. Die von einer Trenneinrichtung verrichtete Arbeit wird in Kilogramm Urantrennarbeit (kg UTA) bzw. Tonnen Urantrennarbeit (t UTA) ausgedrückt. In der englischen Fachliteratur wird diese Einheit als SWU (Separative Work Unit) bezeichnet. Große Anlagen besitzen eine Jahreskapazität in der Größenordnung einiger 1000 t UTA. Die gängigen industriellen Verfahren setzen als Verfahrensmedium Uranhexafluorid (UF6) ein, die einzige chemische Verbindung des Urans, die bei Raumtemperatur eine für den Trennvorgang ausreichende Flüchtigkeit besitzt (etwa 100 mbar Dampfdruck bei Raumtemperatur).
Als Nebenprodukt der Anreicherung entsteht abgereichertes Uran mit einem 235U-Gehalt von ca. 0,3 %. Im Falle der Anreicherung zu zivilen Zwecken fallen etwa 5,5 Tonnen abgereichertes Uran je Tonne Kernbrennstoff an. Das abgereicherte Uran wird unter anderem wegen seiner hohen Dichte in Ausgleichsgewichten für Flugzeugtragflächen und Renn-Yachten sowie militärisch in Uranmunition verwendet. Für solche Zwecke werden aber bisher nur etwa 5 % des anfallenden abgereicherten Urans genutzt, der Rest wird eingelagert. Das Hauptinteresse an diesem Material, besonders von Russland, besteht in der Verwendung als Mischmaterial („Blender-Material“) für die Umwandlung hochangereicherten (militärischen) Urans in schwachangereichertes (ziviles) Uran für den Einsatz in Leichtwasser-Reaktoren. Hier sei besonders die Abrüstungsaktion nach dem START-II-Abkommen genannt: „Megatonnen zu Megawatt“. Laut dem Atomgesetz der Bundesrepublik Deutschland gilt abgereichertes Uran als Wertstoff.
Anreicherungskapazität
Den größten Anteil an der weltweit installierten Gesamtanreicherungskapazität haben immer noch die Diffusionsanlagen. Der Produktionsanteil der Zentrifugenanlagen steigt jedoch in zunehmendem Maße aufgrund der technischen Dominanz der fortschrittlichen Gaszentrifugen. In Frankreich soll demnächst die bestehende Gasdiffusionsanlage (Georges Besse I) durch eine moderne Zentrifugenanlage (Georges Besse II) ersetzt werden. Zwei neue Zentrifugenanlagen sind in den USA geplant.
Die Laseranreicherung, in deren Entwicklung erhebliche Mittel investiert wurden, konnte die in sie gesteckten Erwartungen nicht erfüllen. Die meisten Länder haben sich aus dieser Technologie inzwischen zurückgezogen oder den Forschungsaufwand zumindest deutlich reduziert.
Die gesamte Menge hochangereicherten Urans weltweit belief sich 2010 auf ungefähr 1580 Tonnen.[1] Die nachfolgende Tabelle gibt einen Überblick über die wichtigsten bestehenden Anlagen (mit Kapazitäten über 100 t UTA/a):
Land Anlage Betreiber Verfahren t UTA/Jahr
aktuellt UTA/Jahr
EndausbauChina Lanchow CNNC Diffusion ca. 700 China Hanchong CNNC Zentrifuge 200 Deutschland Gronau[2] Urenco Zentrifuge 3.200 4.500 Frankreich Tricastin Eurodif Diffusion 10.800 Großbritannien Capenhurst[3] Urenco Zentrifuge 4.200 Japan Rokkasho JNFL Zentrifuge 1.050 1.500 Niederlande Almelo[4] Urenco Zentrifuge 3.600 Russland Jekaterinburg Techsnabexport Zentrifuge 10.000 Russland Krasnojarsk Andrej Rosenskow Zentrifuge 2.500 Russland Rostow am Don Techsnabexport Zentrifuge 1.400 Russland Angarsk Techsnabexport Zentrifuge 1.400 Russland Tomsk Techsnabexport Zentrifuge 5.700 USA Paducah USEC Diffusion 11.300 USA Eunice (New Mexiko) LES (Urenco) Zentrifuge 0 5.900 Summe 56.050 Methoden
Diffusionsmethoden
Bei der Gasdiffusionsmethode lässt man gasförmiges Uranhexafluorid (UF6) durch eine poröse Membran diffundieren. Die treibende Kraft hierbei ist der Druckunterschied auf beiden Seiten der Membran. Moleküle, die 235U enthalten, sind leichter als die 238U-enthaltenden und diffundieren schneller. Bei einem Uranisotopengemisch enthält daher der Gasstrom, der durch die Poren in der Wand hindurch diffundiert („Product“), einen geringfügig höheren Anteil des Isotops 235U als der ursprüngliche Strom („Feed“). Eine einzelne Trennstufe hat einen geringen Trennfaktor (Konzentrationsverhältnis des 235U in Product und Tails) von maximal 1,004, aber einen hohen Materialdurchsatz. Für einen Anreicherungsgrad, der zum Betrieb von Leichtwasserreaktoren genügt, sind rund 1200 hintereinander geschaltete Stufen erforderlich, die zusammen eine so genannte „Kaskade“ bilden. Der Energieverbrauch ist hoch und beträgt etwa 2300–2500 kWh pro kg Urantrennarbeit (UTA).
Anstelle des Druckunterschiedes kann grundsätzlich auch ein Temperaturgefälle zur Isotopentrennung mittels Diffusion ausgenutzt werden (siehe Thermodiffusion). Für die Urananreicherung spielen diese Verfahren jedoch keine praktische Rolle.
Anreicherung durch Gaszentrifugen
Das Gaszentrifugenverfahren ist im internationalen Bereich heute das gängigere Verfahren zur Urananreicherung und hat die Gasdiffusion in ihrer Bedeutung inzwischen überholt[5]. Die wichtigsten Gründe dafür sind der erheblich geringere Energieverbrauch (rund 50 kWh pro kg UTA; zum Vergleich: Diffusionstrennung bis 2500 kWh pro kg UTA) sowie eine größere Flexibilität in der Kapazitätsplanung.
Im Gaszentrifugenverfahren wird gasförmiges Uranhexafluorid (UF6) in das Innere eines senkrecht stehenden, sehr schnell ( > 60.000 U/min) rotierenden Zylinders geleitet. Unter dem Einfluss der hohen Geschwindigkeit und der dadurch bedingten massenabhängigen Zentripetalkräfte konzentrieren sich die schwereren 238UF6-Moleküle an der Innenwand des zylindrischen Rotors und die leichteren 235UF6-Moleküle nahe der Rotorachse, wodurch die Isotope getrennt werden.
Uranhexafluorid ist auch deshalb so gut für den Anreicherungsprozess geeignet, da Fluor nur in einem Isotop vorkommt (Reinelement). Die Masse der UF6-Moleküle variiert daher nur durch die unterschiedlichen Massen der Uranisotope. Durch die verhältnismäßig kleine Masse des Fluoratoms beträgt der relative Masseunterschied zwischen den UF6-Molekülen trotzdem noch immer rund 0,85 % im Vergleich zu etwa 1,3 % relativem Masseunterschied zwischen den Uranisotopen selbst:
Die Trennwirkung wird in modernen Zentrifugen verstärkt, indem durch Beheizen des unteren und Kühlen des oberen Teils der Zentrifuge eine axiale Naturumlaufströmung erzeugt wird. Solche Zentrifugen werden auch als Gegenstromzentrifugen bezeichnet. Der größte Massenunterschied zwischen mit 235U an- und abgereichertem Massenstrom besteht in diesen dann nicht mehr zwischen Achse und Rotorwand, sondern zwischen den Enden der Zentrifuge. Die angereicherte, leichte Fraktion („Product“) wird am unteren (warmen) Ende, die abgereicherte, schwerere Fraktion („Tails“) am oberen (kalten) Ende der Zentrifuge entnommen.
Die Entnahmeröhrchen für die an- und abgereicherte Fraktion ragen in den Bereich des rotierenden Gases an der Innenwand der Zentrifuge und nutzen so den Staudruck zum Transport des Gases innerhalb der Anlage. Auch beim Zentrifugenverfahren erfolgt der Trennprozess unter Unterdruck, daher müssen „Product“ und „Tails“ mit Hilfe von Verdichtern und Sublimatoren/Desublimatoren auf Normaldruck gebracht werden, bevor sie in Transport- oder Lagerbehälter abgefüllt werden können.
Die Gaszentrifugen werden üblicherweise zu Kaskaden mit mehreren hundert Einzelzentrifugen verbunden, da jede Zentrifuge nur einen begrenzten Durchsatz und eine begrenzte Anreicherung erreichen kann. Parallelschaltung der Zentrifugen sorgt dabei für die Erhöhung des Durchsatzes, während die Anreicherung durch Serienschaltung erhöht wird. Die Effektivität der Zentrifugen kann durch Vergrößerung der Rohrlänge und insbesondere der Umlaufgeschwindigkeit gesteigert werden, sie besitzen deshalb eine längliche, walzenartige Form. Mit Aluminiumlegierungen werden 400 m/s, mit hochfesten Stählen 500 m/s und mit faserverstärkten Werkstoffen über 700 m/s erreicht. Die Trennleistung wird durch die Materialeigenschaften des schnell umlaufenden Rotors sowie durch technisch bedingte Einschränkungen der Rotorlänge (Auftreten von unerwünschten Eigenschwingungen) praktisch begrenzt.
Elektromagnetische Anreicherung
Wie in einem Massenspektrometer werden bei der elektromagnetischen Isotopen-Trennung Uranatome zunächst ionisiert, dann in einem elektrischen Feld beschleunigt und anschließend in einem magnetischen Feld entsprechend der Unterschiede der Massenzahlen getrennt. Dieser Aufbau zur Isotopentrennung wurde im Zweiten Weltkrieg für die Herstellung von angereichertem Uran für die ersten Atombomben verwendet; die damals verwendeten Anlagen wurden Calutrone genannt. Wegen des enormen Aufwandes hat dieses Verfahren für die Herstellung von angereichertem Uran heute keine Bedeutung mehr. Es wird jedoch in der Forschung für andere Isotopentrennungen eingesetzt, da sich im Idealfall bereits ein einziges gewonnenes Atom eines Isotops detektieren lässt.
Laseranreicherung
Die Laseranreicherung beruht auf der Isotopieverschiebung der Absorptionsspektren von Atomen und Molekülen. Sind die spektroskopischen Bedingungen geeignet, d. h. überlappen die Absorptionslinien der Isotope oder Isotopenverbindungen hinreichend wenig und steht außerdem ein Laser geeigneter Wellenlänge und Schmalbandigkeit zur Verfügung, so ist eine isotopenselektive Anregung möglich. Für die Trennung wird dann ausgenutzt, dass sich die angeregte Spezies von der nicht angeregten in ihren physikalischen und chemischen Eigenschaften wesentlich unterscheidet. Laserverfahren zeichnen sich durch eine hohe Selektivität aus.
Grundsätzlich lassen sich zwei Konzepte unterscheiden: die Photoionisation von Urandampf (atomares Verfahren; AVLIS) und die Photodissoziation von UF6 (molekulares Verfahren; MLIS). Theoretisch erlaubt das Laserverfahren eine Isotopentrennung in einem einzigen Schritt. Praktisch hängt die Zahl der erforderlichen Stufen davon ab, inwieweit sich die idealen Verhältnisse realisieren lassen.
Beim atomaren Verfahren werden die Atome eines Isotopengemisches selektiv ionisiert. Nach der Ionisation eines Isotops (235U) kann es leicht von den nicht ionisierten Atomen des anderen Isotops (238U) durch Beschleunigung in einem elektrischen Feld getrennt werden.
Beim molekularen Verfahren werden zunächst die das 235U enthaltenden Moleküle des gasförmigen Uranhexafluorides selektiv durch einen ersten Laser (zum Beispiel ein frequenzstabilisierter Kohlendioxidlaser[6]) angeregt, bevor durch einen zweiten Laser ein Fluor-Atom abgespalten wird. Das entstehende feste 235UF5 kann leicht aus dem Gas gefiltert werden. Nach anfänglicher Euphorie über die Vorteile dieser Verfahren gegenüber herkömmlichen, etablierten Anreicherungsverfahren[7] ist man inzwischen wieder skeptischer geworden hinsichtlich der industriellen Realisierbarkeit. Viele Forschungs- und Entwicklungsprogramme wurden bereits wieder eingestellt, da sich zeigte, dass die technischen Probleme (Korrosion an den Apparaturen) so unüberwindbar sind, dass auch Hochtechnologie-Länder daran scheiterten. Inzwischen gibt es neuere Bestrebungen, dieses Verfahren wieder zu nutzen.[8]
Trenndüsenverfahren
In Deutschland wurde bis Ende der 1980er Jahre auch das Trenndüsenverfahren entwickelt. Hier erfolgt die Entmischung der Uranisotope aufgrund unterschiedlicher Zentrifugalkräfte in einer schnellen, gekrümmten Strömung. 1975 wurde von Brasilien im Rahmen der deutsch-brasilianischen Kernenergievereinbarung dieses Verfahren übernommen, um seine großen Uranvorkommen zu verarbeiten; die geplanten Anlagen wurden jedoch nicht realisiert. Als Vorteil des Trenndüsenverfahrens kam hier u. a. zum Tragen, dass es keinen Geheimhaltungsbeschränkungen unterlag. Die Republik Südafrika setzte das Trenndüsenverfahren vor 1990 praktisch ein, da bedingt durch das Embargo gegen das Land nur Techniken zum Tragen kommen konnten, die ohne große Schwierigkeiten (ohne Geheimhaltungsbeschränkungen durch die Bundesrepublik Deutschland) nutzbar waren. Der hohe Energieverbrauch wurde in Kauf genommen.
Bedeutung der Urananreicherung für den Bau von Kernwaffen
Die Urananreicherung ist einer von zwei Wegen zum Bau von Kernwaffen. Der andere Weg ist das Erbrüten von Plutonium in einem Kernreaktor und seine anschließende Abtrennung vom gebrauchten Kernbrennstoff durch Wiederaufarbeitung.
Soll die Waffe hohe Sprengkraft erreichen, also von militärstrategischem Interesse sein, dann muss in beiden Fällen das jeweils wichtige Isotop, 235U bzw. 239Pu, nahezu rein vorliegen. Für Kernwaffen geringerer Wirksamkeit, die aber z. B. für terroristische Gruppen interessant genug wären, genügt weniger reines 235U bzw. 239Pu.
Die zum Zünden einer Kernwaffe nötige konventionell-chemische Sprengtechnik ist bei Uran weniger anspruchsvoll als bei Plutonium (siehe Kernwaffentechnik). Wegen der geringeren Strahlung ist eine Uranbombe im Vergleich zur Plutoniumbombe auch besser lagerfähig und leichter handhabbar.
Eine Anreicherungsanlage erfordert für Bau und Betrieb mindestens ein vergleichbares technologisches Niveau wie eine Wiederaufarbeitungsanlage. Für militärische Waffenzwecke muss sie, vereinfacht gesagt, Kilogrammmengen mit hoher Anreicherung liefern, für Reaktoren zur Energieversorgung dagegen Tonnen mit niedriger Anreicherung. Dass eine Anlage nur für den letzteren Zweck verwendet wird, kann im Fall der Gaszentrifugentechnik nur durch ständige oder genügend häufige Inspektionen sichergestellt werden, denn grundsätzlich lässt sich eine solche Anlage durch Änderung von Rohrleitungsverbindungen zwischen den Zentrifugen von dem einen auf den anderen Zweck umstellen.
Im August 2005 blickte die Weltöffentlichkeit auf den Iran und die umstrittene Wiederinbetriebnahme von dessen „Atomkomplex“ in Natans, Provinz Isfahan. Dort wird die Urananreicherung in vergleichsweise geringem Umfang betrieben, der erreichte Anreicherungsgrad ist weit von der Bombentauglichkeit entfernt. Der Iran reklamiert sein Recht zur Anreicherung zu zivilen Energieversorgungszwecken. Die Beherrschung der Gaszentrifugen-Technologie zur Anreicherung stellt jedoch, wie beschrieben, einen wesentlichen Schritt auf dem Weg zur Atommacht dar. Im Februar 2010 erklärte Präsident Mahmud Ahmadinedschad, dass Uran bis 20 % angereichert werde.
Einzelnachweise
- ↑ Atomgipfel in Washington, Artikel aus Der Spiegel, 12. April 2010
- ↑ URENCO Deutschland. Abgerufen am 14. Juni 2011 (englisch).
- ↑ Urenco-UK-Capenhurst
- ↑ Urenco NL Almelo
- ↑ Uranium Enrichment
- ↑ J. W. Eerkens: Spectral Considerations in the Laser Isotope Separation of Uranium Hexafluoride, in: Applied Physics, 10/1976, S. 15–31; doi:10.1007/BF00929525.
- ↑ Billig-Brennstoff für Atomkraftwerke, Die Zeit, 13. Juni 1975, Nr. 25.
- ↑ Mit Lasern Uran anreichern – Eine neue Anlage soll 42 Millionen Haushalte in den USA kompakter, schneller und günstiger mit Strom versorgen. In: Welt am Sonntag. vom 28. August 2011.
Weblinks
Commons: Urananreicherung – Sammlung von Bildern, Videos und Audiodateien- Forschungszentrum Jülich – Sicherheitsforschung und Reaktortechnik am Institut für Energieforschung mit einer Infothek zur Kernenergie
- Forschungszentrum Karlsruhe – Nukleare Sicherheitstechnik und Kernfusion am Forschungsbereich Energie der Helmholtz-Gemeinschaft mit geschichtlichen Daten zur Urananreicherung und einem Lexikon zur Kernenergie
- Urenco Deutschland – Führender Anbieter von Dienstleistungen und Technologien zur Urananreicherung
Kategorien:- Kernbrennstofftechnik
- Nukleare Wiederaufarbeitung
- Trennverfahren
- Urananreicherungsanlage
Wikimedia Foundation.