Abelsch

Abelsch
Abelsche Gruppe (=kommutative Gruppe) (Axiome EANIK)

berührt die Spezialgebiete

ist Spezialfall von

umfasst als Spezialfälle

In der abstrakten Algebra ist eine abelsche Gruppe eine Gruppe (G, * ), für die das Kommutativgesetz

a * b = b * a für alle a, b \in G

gilt. Sie ist benannt nach dem norwegischen Mathematiker Niels Henrik Abel.

Ist eine Gruppe abelsch, dann schreibt man ihre Verknüpfung meist additiv (Operator „+“; 0 als das neutrale Element oder Nullelement; −a als das Inverse oder Negative von a) oder multiplikativ (Operator „·“; 1 als das neutrale Element oder Einselement; a − 1 als das Inverse oder Kehrwert von a).

Inhaltsverzeichnis

Beispiele

Jede zyklische Gruppe ist abelsch; Beispiele sind die additive Gruppe (\Bbb Z, +) der ganzen Zahlen oder der Restklassenring (\Bbb Z/n\Bbb Z, +) mit der Addition.

Die reellen Zahlen bilden eine abelsche Gruppe mit der Addition; ohne die Null bilden sie eine abelsche Gruppe mit der Multiplikation.

Allgemeiner liefert jeder Körper (K, +, \cdot) in derselben Weise zwei abelsche Gruppen (K, + ) und (K\setminus\{0\}, \cdot).

Ein weiteres Beispiel ist die Faktorgruppe \Bbb Q/\Bbb Z, die isomorph zur (multiplikativen) Gruppe der komplexen Einheitswurzeln ist. Die Faktorgruppe \R/\Bbb Z ist isomorph zur Gruppe aller komplexen Zahlen mit Betrag 1.

Eigenschaften

Für eine (kleine) endliche Gruppe erkennt man leicht, ob sie abelsch ist:

Genau dann, wenn eine Gruppe abelsch ist, ist ihre Gruppentafel symmetrisch zur Hauptdiagonalen, die von links oben nach rechts unten führt.

Ist n eine natürliche Zahl und x ein Element der abelschen Gruppe G, dann kann man nx definieren als die Summe x+x+\cdots+x mit genau n Summanden, 0x als 0 (das neutrale Element der Gruppe) und (−n)x als −(nx). Auf diese Weise wird G zu einem Modul über dem Ring Z. Da jeder Z-Modul eine abelsche Gruppe ist, kann man also die Z-Moduln mit den abelschen Gruppen identifizieren. Theoreme über abelsche Gruppen können so oft verallgemeinert werden zu Sätzen für Moduln über Hauptidealringen. Ein Beispiel ist die Klassifikation endlich erzeugter abelscher Gruppen (siehe unten).

Jede Untergruppe einer abelschen Gruppe ist ein Normalteiler, also kann man zu jeder Untergruppe eine Faktorgruppe erzeugen. Untergruppen, Faktorgruppen, Produkte und direkte Summen abelscher Gruppen sind wieder abelsch.

Sind f, g\colon G \to H zwei Gruppenhomomorphismen zwischen abelschen Gruppen, dann ist ihre Summe f + g, definiert durch

\left(f+g\right)\left(x\right) = f\left(x\right)+g\left(x\right)

ebenfalls ein Homomorphismus. (Das gilt nicht, wenn H nicht abelsch ist.) Die Menge Hom(G, H) aller Gruppenhomomorphismen wird mit dieser Addition selbst zu einer abelschen Gruppe.

Die abelschen Gruppen mit ihren Homomorphismen bilden eine Kategorie. Diese ist der Prototyp einer abelschen Kategorie.

Viele abelsche Gruppen haben eine natürliche Topologie, durch die sie zu topologischen Gruppen werden.

Zusätzliche Attribute

  • Eine abelsche Gruppe ist genau dann endlich erzeugt, wenn es eine endliche Menge E = \{e_1, \ldots, e_k\} gibt, so dass sich jedes Element in der Form
a_1\cdot e_1+ \cdots +a_k \cdot e_k
mit ganzen Zahlen a_1, \ldots, a_k schreiben lässt. Insbesondere ist jede endliche abelsche Gruppen endlich erzeugt.

Strukturtheorie

  • Vollständig klassifiziert sind die endlich erzeugten abelschen Gruppen. Sie sind nämlich direkte Summen endlich vieler zyklischer Gruppen, und diese sind bis auf die Reihenfolge eindeutig bestimmt.
  • Für beliebige abelsche Gruppen kann man analog zum Begriff der Dimension eines Vektorraums jeder abelschen Gruppe ihren Rang zuordnen. Er ist definiert als die größte Mächtigkeit einer \mathbb{Z}-linear unabhängigen Teilmenge. Die ganzen Zahlen und die rationalen Zahlen \mathbb{Q} haben Rang 1, so wie jede Untergruppe von \mathbb{Q}. Die abelschen Gruppen vom Rang 1 sind gut verstanden, dagegen sind für höhere Ränge noch viele Fragen offen. Abelsche Gruppen mit unendlichem Rang können extrem komplex sein und ihre offenen Fragen sind oft eng verbunden mit Fragen der Mengenlehre.

Siehe auch


Wikimedia Foundation.

Игры ⚽ Поможем сделать НИР

Schlagen Sie auch in anderen Wörterbüchern nach:

  • abelsch —   [nach N. H. Abel], Algebra: Eine mathematische Verknüpfung (z. B. +, ; allgemein°) heißt abelsch oder kommutativ, wenn sie das Kommutativgesetz a ° b = b ° a (für alle a, b des betreffen …   Universal-Lexikon

  • Abelsch — * Heb di nich so abelsch. – Dähnert, 2a. Stell dich nicht so albern …   Deutsches Sprichwörter-Lexikon

  • Liste kleiner Gruppen — Die folgende Liste enthält eine Auswahl endlicher Gruppen kleiner Ordnung. Diese Liste kann benutzt werden, um herauszufinden, zu welchen bekannten endlichen Gruppen eine Gruppe G isomorph ist. Als erstes bestimmt man die Ordnung von G und… …   Deutsch Wikipedia

  • Freie abelsche Gruppe — In der Mathematik ist eine freie abelsche Gruppe eine abelsche Gruppe, die eine Basis hat. Das bedeutet, dass jedes Element der Gruppe auf genau eine Weise als Linearkombination von Elementen der Basis mit ganzzahligen Koeffizienten geschrieben… …   Deutsch Wikipedia

  • Glossar mathematischer Attribute — Dieser Artikel wurde auf der Qualitätssicherungsseite des Portals Mathematik zur Löschung vorgeschlagen. Dies geschieht, um die Qualität der Artikel aus dem Themengebiet Mathematik auf ein akzeptables Niveau zu bringen. Dabei werden Artikel… …   Deutsch Wikipedia

  • Gruppentheorie — Die Gruppentheorie als mathematische Disziplin untersucht die algebraische Struktur der Gruppen. Anschaulich besteht eine Gruppe aus den Symmetrien eines Objekts oder einer Konfiguration zusammen mit der Verknüpfung, die durch das… …   Deutsch Wikipedia

  • Abelgruppe — Abelsche Gruppe (=kommutative Gruppe) (Axiome EANIK) berührt die Spezialgebiete Mathematik Abstrakte Algebra Gruppentheorie ist Spezialfall von Magma ( …   Deutsch Wikipedia

  • Abelsche Gruppe — Eine abelsche Gruppe (nach dem norwegischen Mathematiker Niels Henrik Abel) ist in der Gruppentheorie eine Gruppe , für die das Kommutativgesetz  für alle   gilt. Ist eine Gruppe abelsch, dann schreibt man ihre Verknüpfung meist additiv …   Deutsch Wikipedia

  • Auflösbar — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen …   Deutsch Wikipedia

  • Euklidisch — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”