Kommutative Gruppe

Kommutative Gruppe
Abelsche Gruppe (=kommutative Gruppe) (Axiome EANIK)

berührt die Spezialgebiete

ist Spezialfall von

umfasst als Spezialfälle

In der abstrakten Algebra ist eine abelsche Gruppe eine Gruppe (G, * ), für die das Kommutativgesetz

a * b = b * a für alle a, b \in G

gilt. Sie ist benannt nach dem norwegischen Mathematiker Niels Henrik Abel.

Ist eine Gruppe abelsch, dann schreibt man ihre Verknüpfung meist additiv (Operator „+“; 0 als das neutrale Element oder Nullelement; −a als das Inverse oder Negative von a) oder multiplikativ (Operator „·“; 1 als das neutrale Element oder Einselement; a − 1 als das Inverse oder Kehrwert von a).

Inhaltsverzeichnis

Beispiele

Jede zyklische Gruppe ist abelsch; Beispiele sind die additive Gruppe (\Bbb Z, +) der ganzen Zahlen oder der Restklassenring (\Bbb Z/n\Bbb Z, +) mit der Addition.

Die reellen Zahlen bilden eine abelsche Gruppe mit der Addition; ohne die Null bilden sie eine abelsche Gruppe mit der Multiplikation.

Allgemeiner liefert jeder Körper (K, +, \cdot) in derselben Weise zwei abelsche Gruppen (K, + ) und (K\setminus\{0\}, \cdot).

Ein weiteres Beispiel ist die Faktorgruppe \Bbb Q/\Bbb Z, die isomorph zur (multiplikativen) Gruppe der komplexen Einheitswurzeln ist. Die Faktorgruppe \R/\Bbb Z ist isomorph zur Gruppe aller komplexen Zahlen mit Betrag 1.

Eigenschaften

Für eine (kleine) endliche Gruppe erkennt man leicht, ob sie abelsch ist:

Genau dann, wenn eine Gruppe abelsch ist, ist ihre Gruppentafel symmetrisch zur Hauptdiagonalen, die von links oben nach rechts unten führt.

Ist n eine natürliche Zahl und x ein Element der abelschen Gruppe G, dann kann man nx definieren als die Summe x+x+\cdots+x mit genau n Summanden, 0x als 0 (das neutrale Element der Gruppe) und (−n)x als −(nx). Auf diese Weise wird G zu einem Modul über dem Ring Z. Da jeder Z-Modul eine abelsche Gruppe ist, kann man also die Z-Moduln mit den abelschen Gruppen identifizieren. Theoreme über abelsche Gruppen können so oft verallgemeinert werden zu Sätzen für Moduln über Hauptidealringen. Ein Beispiel ist die Klassifikation endlich erzeugter abelscher Gruppen (siehe unten).

Jede Untergruppe einer abelschen Gruppe ist ein Normalteiler, also kann man zu jeder Untergruppe eine Faktorgruppe erzeugen. Untergruppen, Faktorgruppen, Produkte und direkte Summen abelscher Gruppen sind wieder abelsch.

Sind f, g\colon G \to H zwei Gruppenhomomorphismen zwischen abelschen Gruppen, dann ist ihre Summe f + g, definiert durch

\left(f+g\right)\left(x\right) = f\left(x\right)+g\left(x\right)

ebenfalls ein Homomorphismus. (Das gilt nicht, wenn H nicht abelsch ist.) Die Menge Hom(G, H) aller Gruppenhomomorphismen wird mit dieser Addition selbst zu einer abelschen Gruppe.

Die abelschen Gruppen mit ihren Homomorphismen bilden eine Kategorie. Diese ist der Prototyp einer abelschen Kategorie.

Viele abelsche Gruppen haben eine natürliche Topologie, durch die sie zu topologischen Gruppen werden.

Zusätzliche Attribute

  • Eine abelsche Gruppe ist genau dann endlich erzeugt, wenn es eine endliche Menge E = \{e_1, \ldots, e_k\} gibt, so dass sich jedes Element in der Form
a_1\cdot e_1+ \cdots +a_k \cdot e_k
mit ganzen Zahlen a_1, \ldots, a_k schreiben lässt. Insbesondere ist jede endliche abelsche Gruppen endlich erzeugt.

Strukturtheorie

  • Vollständig klassifiziert sind die endlich erzeugten abelschen Gruppen. Sie sind nämlich direkte Summen endlich vieler zyklischer Gruppen, und diese sind bis auf die Reihenfolge eindeutig bestimmt.
  • Für beliebige abelsche Gruppen kann man analog zum Begriff der Dimension eines Vektorraums jeder abelschen Gruppe ihren Rang zuordnen. Er ist definiert als die größte Mächtigkeit einer \mathbb{Z}-linear unabhängigen Teilmenge. Die ganzen Zahlen und die rationalen Zahlen \mathbb{Q} haben Rang 1, so wie jede Untergruppe von \mathbb{Q}. Die abelschen Gruppen vom Rang 1 sind gut verstanden, dagegen sind für höhere Ränge noch viele Fragen offen. Abelsche Gruppen mit unendlichem Rang können extrem komplex sein und ihre offenen Fragen sind oft eng verbunden mit Fragen der Mengenlehre.

Siehe auch


Wikimedia Foundation.

Игры ⚽ Нужна курсовая?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • kommutative Gruppe — kommutative Gruppe,   Mathematik: die abelsche Gruppe …   Universal-Lexikon

  • Gruppe (Mathematik) — Gruppe (Axiome EANI) berührt die Spezialgebiete Mathematik Abstrakte Algebra Gruppentheorie ist Spezialfall von Magma (Axiom E) Halbgruppe (EA) Monoid (EAN) …   Deutsch Wikipedia

  • Gruppe Mathematik — Gruppe (Axiome EANI) berührt die Spezialgebiete Mathematik Abstrakte Algebra Gruppentheorie ist Spezialfall von Magma (Axiom E) Halbgruppe (EA) Monoid (EAN) …   Deutsch Wikipedia

  • Ordnung einer Gruppe — Gruppe (Axiome EANI) berührt die Spezialgebiete Mathematik Abstrakte Algebra Gruppentheorie ist Spezialfall von Magma (Axiom E) Halbgruppe (EA) Monoid (EAN) …   Deutsch Wikipedia

  • Gruppe — Haufen; Menge; Partie; Posten; Klasse; Stand; Personenkreis; Kaste; Gesellschaftsschicht; Kohorte; Schicht; Kolonne; …   Universal-Lexikon

  • Grothendieck-Gruppe — Die Grothendieck Gruppe ist eine mathematische Konstruktion, die einer kommutativen Halbgruppe eine Gruppe zuordnet. Diese nach Alexander Grothendieck benannte Konstruktion ist der Lokalisierung aus der Ringtheorie nachempfunden und kann wie… …   Deutsch Wikipedia

  • Nilpotente Gruppe — ist ein Begriff aus dem Bereich der Gruppentheorie, einem Teilgebiet der Mathematik. In gewissem Sinn verallgemeinert er für endliche Gruppen den Begriff der kommutativen Gruppe „so wenig wie möglich“: Jede kommutative Gruppe ist nilpotent, aber… …   Deutsch Wikipedia

  • Einfache Gruppe — Endliche einfache Gruppen, im Folgenden kurz als einfache Gruppen bezeichnet, gelten in der Gruppentheorie (einem Teilgebiet der Mathematik) als die Bausteine der endlichen Gruppen. Einfache Gruppen spielen für die endlichen Gruppen eine ähnliche …   Deutsch Wikipedia

  • Endliche einfache Gruppe — Endliche einfache Gruppen, im Folgenden kurz als einfache Gruppen bezeichnet, gelten in der Gruppentheorie (einem Teilgebiet der Mathematik) als die Bausteine der endlichen Gruppen. Einfache Gruppen spielen für die endlichen Gruppen eine ähnliche …   Deutsch Wikipedia

  • Mittelbare Gruppe — ist ein Begriff aus dem mathematischen Teilgebiet der harmonischen Analyse. Es handelt sich dabei um lokalkompakte Gruppen, auf denen eine gewisse Mittelungsfunktion, ein sogenanntes Mittel, existiert. Inhaltsverzeichnis 1 Definition 2 Beispiele… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”