- Riemannsche Normalkoordinaten
-
Riemannsche Normalkoordinaten (nach Bernhard Riemann; auch Normalkoordinaten oder Exponentialkoordinaten) bilden ein besonderes Koordinatensystem, welches in der Differentialgeometrie betrachtet wird. Hier wird der Tangentialraum an p als lokale Karte der Mannigfaltigkeit in einer Umgebung von p verwendet. Solche Koordinaten sind einfach zu handhaben und finden daher auch Anwendung in der allgemeinen Relativitätstheorie.
Inhaltsverzeichnis
Definition
Sei M eine differenzierbare Mannigfaltigkeit mit einem Zusammenhang
und γ sei eine beliebige Kurve, welche die Geodätengleichung
erfüllt. Mit TpM werde der Tangentialraum am Punkt
bezeichnet und für
werde mit
die Exponentialabbildung bezeichnet. Durch eine Wahl einer Orthonormalbasis (Ei)i von TpM erhält man einen Isomorphismus
welcher durch
definiert ist. Sei weiter
eine offene Umgebung von p, auf welcher die Exponentialabbildung ein Isomorphismus ist und, für welche
gilt. Dann erhält man eine Abbildung
Da E und exp p auf den entsprechenden Definitionsbereichen Isomorphismen (Diffeomorphismen) sind, ist auch ϕ ebenfalls diffeomorph und kann somit als Kartenabbildung angesehen werden. Die lokalen Koordinaten, welche man durch diese Karten erhält, heißen riemannsche Normalkoordinaten.
Eigenschaften
Sei (M,g) eine riemannsche Mannigfaltigkeit und seien (U,(xi)i) um
zentrierte riemannsche Normalkoordinaten, dann gilt:
- Für alle
hat die Geodäte γV, welche in p mit dem Geschwindigkeitsvektor V beginnt, in riemannschen Normalkoordinaten die Darstellung
solange γV in U bleibt. - Die Koordinaten von p sind
.
- Die Komponenten der riemannschen Metrik in p sind gij = δij.
- Die Christoffelsymbole in p sind null.
- Ist
der Levi-Civita-Zusammenhang (oder ein anderer metrischer Zusammenhang), dann gilt
Physikalische Sicht
Physikalisch betrachtet beschreiben Normalkoordinaten im Raumzeitpunkt p das Ruhesystem eines frei fallenden Beobachters im Punkt p. Dieser Punkt wird als Ursprung des Koordinatensystems festgelegt. Normalkoordinaten eignen sich zur Beschreibung des Äquivalenzprinzips der allgemeinen Relativitätstheorie. In Normalkoordinaten sind alle Geodäten durch den Ursprung Geraden in der vierdimensionalen Raumzeit. Damit wird verständlich, was die Äquivalenz frei fallender Beobachter mit Beobachtern in Inertialsystemen bedeutet. Da nur die Geodäten durch einen einzigen Raumzeitpunkt Geraden sind, ist das Äquivalenzprinzip nur in einem einzelnen Raumzeitpunkt genau gültig. Die krummen Geodäten, die nicht durch den Ursprung laufen, werden vom Beobachter durch Gezeitenkräfte erklärt.
In Normalkoordinaten lässt sich der metrische Tensor in einem Punkt q als Reihenentwicklung in den Koordinaten dieses Punktes angeben:
dabei sind qρ die Komponenten von q in Normalkoordinaten, ημν die Komponenten der Minkowski-Metrik und Rμλνρ die Komponenten des riemannschen Krümmungstensors. Es wird die einsteinsche Summenkonvention verwendet. Mit zunehmendem Abstand des Punktes q vom Koordinatenursprung p weicht der metrische Tensor immer mehr von der flachen Minkowski-Metrik ab. Dies führt zu Gezeitenkräften, die direkt vom Krümmungstensor abhängen.
Literatur
- John M. Lee: Riemannian Manifolds. An Introduction to Curvature. Springer, New York 1997, ISBN 0387983228.
Wikimedia Foundation.