Value at Risk

Value at Risk

Der Begriff Wert im Risiko oder englisch Value at Risk (VaR) bezeichnet ein Risikomaß, das angibt, welchen Wert der Verlust einer bestimmten Risikoposition (z. B. eines Portfolios von Wertpapieren) mit einer gegebenen Wahrscheinlichkeit und in einem gegebenen Zeithorizont nicht überschreitet.

Ein Value at Risk von 10 Mio. EUR bei einer Haltedauer von 1 Tag und einem Konfidenzniveau von 97,5% bedeutet, dass der potentielle Verlust der betrachteten Risikoposition von einem Tag auf den nächsten mit einer Wahrscheinlichkeit von 97,5% den Betrag von 10 Mio. EUR nicht überschreiten wird.

Das Value at Risk wurde von J.P. Morgan (siehe JPMorgan Chase & Co.) entwickelt und ist heute ein Standardrisikomaß im Finanzsektor. Mittlerweile wird das Konzept auch in Industrie- und Handelsunternehmen für die Quantifizierung bestimmter Risiken (meist finanzwirtschaftliche Risiken) eingesetzt.

Inhaltsverzeichnis

Konzept

Der Value at Risk zum Konfidenzniveau 1 − α beschreibt das α-Quantil der Verteilung der Wertveränderung (Gewinne und Verluste) einer Risikoposition über die Haltedauer. Die Wertveränderung des Portfolios über den betrachteten Zeitraum kann man mit der Zufallsvariablen X beschreiben, die Verteilungsfunktion sei FX. Der Value at Risk wird dann zu einem gegebenen Konfidenzniveau 1 − α berechnet und stellt das entsprechende Quantil der Verteilung von X dar:

VaR_\alpha(X)=F_X^{-1}(\alpha).

Sowohl ein höheres Konfidenzniveau als auch eine längere Haltedauer haben einen höheren VaR zur Folge.

Der VaR besitzt als Risikomaß die Eigenschaften Monotonie, Homogenität und Translationsinvarianz, ist jedoch nicht subadditiv. Der VaR ist ein Downside-Riskmaß, das nur der Messung potenzieller Verluste dient, d.h. nur das "negative Ende" der Wahrscheinlichkeitsverteilung wird betrachtet.

Das VaR ist ein Risikomaß, das unterschiedliche Risikoarten in einer vergleichbaren Kennzahl zusammenfasst. So kann das Risiko eines Aktienportfolios, eines Zinsportfolios oder auch eines Kreditportfolios mit Hilfe des VaR beschrieben werden, wobei die betriebswirtschaftliche Interpretation der Kennzahl immer die gleiche ist. Es ist sogar prinzipiell denkbar, für gemischte Portfolios, die aus mehreren verschiedenen Assetklassen zusammengesetzt werden, einen VaR zu berechnen. In der Praxis scheitert dies jedoch häufig daran, dass die Interdependenzen zwischen den verschiedenen Assetklassen nicht modelliert werden können (z.B. weil keine Korrelationskoeffizienten bekannt sind).

Praktische Umsetzungen des Value at Risk-Konzeptes

Das VaR-Konzept kann grundsätzlich auf eine Vielzahl von Risiken angewendet werden. In der Praxis finden sich jedoch meist spezifische Anwendungen.

Marktpreisrisikomodelle

Value at Risk-Modelle wurden ursprünglich zur Messung von Marktpreisrisiken entwickelt und haben für diesen Zweck als “Marktpreisrisikomodelle” eine weite Verbreitung gefunden. Marktpreisrisikomodelle werden zur Risikomessung einzelner Handelsportfolios (siehe Handel) ebenso eingesetzt wie zur Risikomessung auf Gesamtbankebene, insbesondere zur Messung des Zinsänderungsrisikos. Allen Marktpreisrisikomodellen ist gemein, dass sie sich prinzipiell auf Risiken beziehen, die über entsprechende Instrumente mehr oder minder liquide an den Finanzmärkten handelbar sind.

Die verschiedenen Ansätze beruhen alle darauf,

  • die für die Marktpreisrisiken eines Portfolios relevanten Treiber mit einem stochastischen Modell zu beschreiben und
  • hieraus das Quantil der zukünftigen möglichen Wertänderungen des betrachteten Portfolios zu bestimmen.

Die Treiber des Marktpreisrisikos sind die den Portfoliowert bestimmenden Marktpreise, also Aktienkurse, Wechselkurse, Zinsen etc. (die sog. Risikofaktoren). Diese gehen mit den Schwankungsbreiten (Volatilität) zukünftiger Änderungen und den Zusammenhängen (Korrelation) zwischen den Änderungen verschiedener Risikofaktoren in die stochastische Modellierung ein. Die entsprechenden Werte für Schwankungsbreiten und Korrelationen werden normalerweise auf der Basis historischer Marktpreisänderungen geschätzt.

Mit Hilfe von Bewertungsmodellen und Informationen über die Portfoliozusammensetzung (“Position”) müssen die Marktpreisänderungen dann in Portfoliowertänderungen umgerechnet werden. Die Bewertungsmodelle beschreiben den Zusammenhang zwischen Marktpreisen und den Werten der im Portfolio vorhandenen Finanzinstrumente; ein Beispiel ist die Barwertformel, die den Wert einer Anleihe in Abhängigkeit von den Marktzinsen angibt. Hierbei ist zu beachten, dass Marktpreisrisikomodellen normalerweise kein buchhalterischer, sondern ein marktpreisorientierter bzw. barwertiger Wertbegriff zugrunde liegt. Je nach Modellansatz erhält man aus diesem Schritt sofort das Quantil der Wertänderung, also den VaR, oder eine Verteilungsfunktion für Portfoliowertänderungen, aus der der VaR ermittelt werden kann.

Folgende Ansätze werden in der Praxis am häufigsten verwendet:

  • Varianz-Covarianz-Ansatz: Dieser Begriff wird häufig synonym mit der korrekteren Bezeichnung “Delta-Normal-Ansatz” verwendet und entspricht dem ursprünglichen VaR-Modell von J. P. Morgan. Die Stochastik der Risikofaktoren (Volatilitäten und Korrelationen) wird durch eine Kovarianzmatrix beschrieben, d. h. man geht von multivariat normalverteilten Änderungen der Risikofaktoren aus. Die Portfolioinformation fließt in Form von Sensitivitäten ein, d. h. den jeweils ersten Ableitungen des Portfoliowertes nach den Risikofaktoren. Da der Delta-Normal-Ansatz nur lineare Beziehungen zwischen Risikofaktoren und Marktpreisen abbilden kann, eignet er sich nicht für stark nichtlineare Finanzinstrumente wie Optionen. Sein Vorteil liegt darin, dass er einfach zu implementieren ist und eine einfache Analyse von Diversifikations- und Hedgeeffekten zwischen den Portfoliobestandteilen ermöglicht.
    Ebenfalls unter den Varianz-Covarianz-Ansatz fallen der analytische Delta-Gamma-Ansatz und die Cornish-Fisher-Approximation, die die Berücksichtigung nichtlinearer Finanzinstrumente erlauben. Ein gemeinsamer Nachteil aller Varianz-Covarianz-Ansätze ist die Normalverteilungsannahme, die die zu beobachtende leptokurtische Verteilung (“fat tails”, siehe Wölbung (Statistik)) von Marktpreisänderungen vernachlässigt.
  • Mit Monte-Carlo-Simulation wird ein spezifischer Ansatz in Bezug auf Marktpreisrisikomodelle bezeichnet. Hierbei werden – normalerweise auf Basis der Kovarianzmatrix historischer Marktpreisänderungen – mehrere 1000 zufällige Marktpreisänderungen generiert und in Portfoliowertänderungen umgerechnet. Aus der so erzeugten Verteilung von Portfoliowertänderungen kann der VaR ermittelt werden. Im Unterschied zum Delta-Normal-Ansatz und der Delta-Gamma-Methode können so auch Finanzinstrumente mit stark nichtlinearem Auszahlungsprofil in die VaR-Berechnung einbezogen werden. Nachteilig sind der hohe Rechenaufwand und die verwendete Normalverteilungsannahme.
  • Die Historische Simulation unterscheidet sich von den vorgenannten Ansätzen dadurch, dass sie kein parametrisiertes Modell der Risikofaktoren verwendet (daher auch “nichtparametrischer Ansatz” im Gegensatz zu auch “parametrischer Ansatz” für die beiden vorgenannten Methoden). Vielmehr werden historische Marktpreisänderungen direkt zur Bewertung des aktuellen Portfolios herangezogen. Bei einem historischen Beobachtungszeitraum von beispielsweise 251 Tagen erhält man 250 Änderungen aller Risikofaktoren, die man über die Positionsinformation und die Bewertungsmodelle in 250 mögliche zukünftige Wertänderungen des aktuellen Portfolios umrechnet. Somit erhält man eine nichtparametrische Verteilungsfunktion der Portfoliowertänderungen, aus der man den VaR ablesen kann. Vorteile der historischen Simulation sind die einfache Implementierung, die einfache Aggregation von Risikozahlen über verschiedene Portfolien und EDV-Systeme hinweg und die Tatsache, dass keine Annahmen über die Verteilungsfunktion gemacht werden. Nachteilig sind eine gewisse Instabilität des Schätzers auf Grund der normalerweise geringen Anzahl der berechneten zukünftigen Portfoliowertänderungen und – zumindest theoretisch – die fehlende Subadditivität des berechneten VaRs.

Kreditrisikomodelle

Kreditrisikomodelle, die den Value at Risk Ansatz verwenden, unterscheiden sich vor allem darin, wie die Verlustverteilung der Kredite modelliert wird. Im wesentlich gibt es folgende drei Modellarten:[1][2]

  • Ausfallmodelle (Default-Modelle) unterscheiden nur zwischen Ausfall bzw. Nicht-Ausfall eines Kredites. Die bekanntesten Berechnungsverfahren sind:
  • Migrationsmodelle (Mark-to-Market-Modelle) berücksichtigen nicht nur die Ausfälle, sondern auch die Wertänderung eines Kredites, wenn sich die Bonität des Schuldners verbessert oder verschlechtert. Die bekanntesten Berechnungsverfahren sind:
    • CreditMetrics von J.P. Morgan.[5]. Die vielen verschiedenen Möglichkeiten, wie sich die Bonität einzelner Kunden verändern kann, werden mit dem Monte-Carlo-Verfahren berechnet.
    • Das Modell der Firma KMV. Der mögliche Ausfall eines Kredites wird über eine Put-Option modelliert. Der Wert dieser Option lässt sich über das Black-Scholes-Modell berechnen.
    • CreditPortfolioView der Firma McKinsey verwendet die Logistische Regression um mit Hilfe von makroökonomischen Variablen die Ausfallswahrscheinlichkeiten zu berechnen.
  • Spread-Modelle sind im Wesentlichen Marktrisikomodelle. Sie messen das Risiko, das sich aus der Veränderung der Marktmeinung zur Bonität eines Schuldner (Credit-Spread) ergibt. Zur Berechnung stehen die selben Verfahren wie für die Marktrisikomodelle zur Verfügung.

Der Einsatz des Value at Risk zur Modellierung von Kreditrisiken weist anders als bei Marktrisiken folgende Probleme auf (ausgenommen sind hier die Spread-Modelle):

  • Kreditbeziehungen gehen meist über Jahre und Ausfallsereignisse sind relativ selten. Damit ist historisches Datenmaterial für die Schätzung von statistischen Parametern oft unzureichend. Weiters ist somit eine Qualitätskontrolle der Risikowerte über ein so genanntes Backtesting praktisch nicht möglich.
  • Die Verlustverteilung eines Kreditportfolios ist nicht normalverteilt. Vielmehr handelt es sich im Regelfall um schiefe Verteilungen. Dies erschwert eine statistische Modellierung, da damit in seltenen Fällen auch sehr hohe Verluste auftreten können.

Andere Anwendungen

Dem Marktpreisrisiko verwandt ist der Begriff des Tracking VaR. Im Gegensatz zum normalen Marktpreisrisiko gibt der Tracking VaR nicht das Quantil einer absoluten Portfoliowertänderung an, sondern das Quantil der Abweichung der Portfoliorendite relativ zu einer vorgegebenen Benchmark. Der Tracking VaR ist insbesondere in der Vermögensverwaltung von Bedeutung.

Auch für operationelle Risiken existieren stochastische Modelle, mit denen versucht wird, das Quantil zukünftiger Verluste aus Betriebsrisiken zu prognostizieren. Diese Modelle haben mit der Solvabilitätsverordnung und der darin geforderten Eigenkapitalunterlegung für operationelle Risiken bei Banken eine erhöhte Bedeutung erlangt (sog. AMA-Modelle, siehe unten).

Ein verbreiteter Ansatz ist dabei der sog. Verlustverteilungsansatz. Im Verlustverteilungsansatz werden zwei Wahrscheinlichkeitsverteilungen verwendet:

  • Die Häufigkeits- oder Frequenzverteilung gibt an, mit welcher Wahrscheinlichkeit jeweils eine bestimmte Anzahl Verlustereignisse aus operationellen Risiken in einem definierten Zeitraum (z. B. ein Jahr) eintritt.
  • Die Schadenshöhenverteilung gibt die Wahrscheinlichkeit an, dass ein gegebenes Ereignis einen Verlust in einer bestimmten Höhen verursacht.

Die beiden Verteilungen können aus historischen Daten geschätzt oder über Expertenschätzungen ermittelt werden. In einer Monte Carlo-Simulation werden beide Verteilungen zu einer Gesamtschadensverteilung kombiniert, die die Wahrscheinlichkeiten angibt, dass im Prognosezeitraum die Summe aller Verluste eine bestimmte Höhe hat. Der VaR zum gewünschten Konfidenzniveau kann dann als das entsprechende Quantil aus dieser Verteilung abgelesen werden.

Anwendungen

Unternehmenssteuerung

Kreditinstitute nutzen das Instrument des Value at Risk zur täglichen Risikosteuerung und ‑überwachung, zur Ermittlung der Risikotragfähigkeit und zur Allokation von Eigenkapital über Geschäftsbereiche hinweg.

Insbesondere bei Marktpreisrisiken hat sich der VaR als Mittel zur täglichen Risikosteuerung und ‑überwachung etabliert. Er wird dabei weniger auf Ebene einzelner Händler oder Handelstische verwendet, sondern auf höher aggregierter Ebene. Dabei kommt zum Tragen, das mit der VaR-Methodik einfach und transparent verschiedene Arten von Marktpreisrisken aggregiert und vergleichbar gemacht werden können, so dass sich die Risikomessung und Risikolimitierung ganzer Handelsabteilungen stark auf eine einzelne Kennzahl stützen kann.

Bei der Ermittlung und Überwachung der Risikotragfähigkeit können die Ergebnisse verschiedener VaR-Modelle (für Marktpreisrisiken, Kreditrisiken etc.) aggregiert werden, um so ein Gesamtrisiko zu erhalten. Da es gegenwärtig kaum möglich ist, alle verschiedenen Risikoarten gemeinsam zu modellieren, müssen für die Korrelationen zwischen den Risikoarten normalerweise recht pauschale Annahmen getroffen werden. Dieses Gesamtrisiko wird einer Risikodeckungsmasse (normalerweise einer an das Eigenkapital angelehnten Größe) gegenübergestellt. Ist das Gesamtrisiko beispielsweise für ein 99,95%-Quantil und eine Haltedauer von einem Jahr berechnet und gerade durch die Risikodeckungsmasse abgedeckt, würde das in diesem Modell bedeuten, dass die Verluste aus allen Risiken über ein Jahr nur mit einer Wahrscheinlichkeit von 0,05% über der Risikodeckungsmasse liegen und deshalb die Überlebenswahrscheinlichkeit der Bank für das nächste Jahr bei 99,95% liegt. Die Bank kann dann ihr Risikoniveau so einstellen, dass die Überlebenswahrscheinlichkeit gerade ihrem Zielrating (vgl. Ratingagentur) entspricht. Wegen der Unsicherheiten in der Modellierung werden allerdings normalerweise zusätzliche Risikopuffer berücksichtigt.

Im Zuge der Eigenkapitalallokation können VaR-Modelle verwendet werden, um für einzelne Geschäftsbereiche Risikozahlen und damit Bedarf an Risikodeckungsmasse (Eigenkapital) zu ermitteln. Mit dem so zugeteilten Eigenkapital können den Geschäftsfeldern im Zuge der Geschäftsfeldrechnung Eigenkapitalkosten belastet werden und es können risikoadjustierte Erfolgsmaße (z. B. RAROC, EVA) bestimmt werden.

Bankaufsichtliche Anwendung

(vgl. Bankenaufsicht)

Die im Zuge der KWG-Novelle 1998 vorgenommene Änderung des Grundsatz I erlaubte es deutschen Kreditinstituten erstmals, zur bankinternen Steuerung verwendete Value at Risk-Modelle auch zur Berechnung der bankaufsichtlichen Eigenmittelunterlegung für die Marktpreisrisiken des Handelsbuchs heranzuziehen. Der für die Eigenkapitalunterlegung berechnete VaR musste für eine Haltedauer von 10 Tagen und ein Konfidenzniveau von 99% berechnet sein und auf einer historischen Beobachtungsdauer von mindestens 250 Handelstagen beruhen. Neben diesen quantitativen Anforderungen formulierte der Grundsatz I zahlreiche qualitative Anforderung zur Einbindung in das Risikomanagementsystem der Bank, zur laufenden Überprüfung des VaR-Modells (sog. Backtesting oder Rückvergleich) und zur Betrachtung von Krisenszenarien (Stresstests). Die Regelungen des Grundsatz I wurden im Wesentlichen unverändert in die Solvabilitätsverordnung übernommen.

Der Berechnungsformel für die Eigenkapitalunterlegung für Kreditrisiken gemäß Solvabilitätsverordnung liegt bei der Verwendung des IRB-Ansatzes auch ein VaR-Modell zu Grunde. Im IRB-Ansatz, IRB steht für internal rating based approach, benutzen Banken eigenentwickelte Risikoeinstufungsverfahren (Ratingverfahren), um bis zu drei Risikoparameter zu schätzen, die das Kreditrisiko der einzelnen Engagements beschreiben (im Basis-IRB-Ansatz ist dies die Ausfallwahrscheinlichkeit, im fortgeschrittenen IRB-Ansatz zusätzlich die Verlustquote bei Ausfall und die Engagementshöhe bei Ausfall). Für die Umrechnung dieser Parameter in eine Eigenkapitalunterlegung gibt die Solvabilitätsverordnung eine Formel vor, die auf einem Kreditrisikomodell beruht (vgl. hierzu auch IRB-Formel).

Mit Inkrafttreten der Solvabilitätsverordnung müssen Banken erstmals auch operationelle Risiken (Betriebsrisiken) mit bankaufsichtlichem Eigenkapital unterlegen. Eine Methode der Eigenkapitalunterlegung ist dabei die Verwendung sogenannter fortgeschrittener Messansätze (AMA-Modelle von Advanced Measurement Approach). Diese stellen gewissermaßen ein VaR-Modell für operationelle Risiken dar. Mit diesen soll das 99,9%-Quantil der Verteilung von Verlusten aus operationellen Risiken bei einem Betrachtungshorizont (entspricht der Haltedauer) von einem Jahr berechnet werden.

Allen drei Verfahren ist gemein, dass sie nur auf Antrag und mit Genehmigung durch die BaFin verwendet werden dürfen, wobei der Genehmigung normalerweise eine Prüfung durch die Bankenaufsicht vorausgeht.

Kritik

Häufig wird als Nachteil des Value at Risk-Ansatzes angeführt, dass er nicht geeignet ist, den Maximalverlust zu bestimmen. Hierbei handelt es sich jedoch nicht um einen wirklichen Nachteil, da es ja das Ziel der Risikomessung gerade nicht ist, den theoretisch möglichen Maximalverlust zu bestimmen. Diesen zu steuern ist normalerweise nicht das Ziel eines Unternehmens: Eine vollkommene Sicherheit kann es normalerweise nicht geben, ein rentables Unternehmen muss auch ein Mindestmaß an Risiko tragen. Eine praxisorientierte Risikomessung muss sich daher an Szenarien orientieren, die ein gewisses Mindestmaß an Eintrittswahrscheinlichkeit aufweisen.

Ein weiterer Kritikpunkt ist, dass der VaR nicht in jedem Fall subadditiv ist, weshalb der Value at Risk kein kohärentes Risikomaß ist. Es ist somit möglich, dass die Summe der VaR-Werte von Teilportfolios kleiner ist als der VaR-Wert des Gesamtportfolios selbst.

Siehe auch

Einzelnachweise

  1. Robert Schwarz: Kreditrisikomodelle, Working Paper Series der University of Applied Sciences of bfi Vienna
  2. Handbuch Kreditrisikomodelle und Kreditderivate, Herausgeber Roland Eller, Walter Gruber, Markus Reif, Schäffer-Poeschel Verlag, ISBN: 3-7910-1411-0
  3. Christian Cech, Die IRB Formel, Working Paper Series der University of Applied Sciences of bfi Vienna
  4. http://www.csfb.com/institutional/research/assets/creditrisk.pdf
  5. http://www.defaultrisk.com/_pdf6j4/creditmetrics_techdoc.pdf

Weblinks


Wikimedia Foundation.

Игры ⚽ Поможем решить контрольную работу

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Value at risk — (VaR) is a maximum tolerable loss that could occur with a given probability within a given period of time. VaR is a widely applied concept to measure and manage many types of risk, although it is most commonly used to measure and manage the… …   Wikipedia

  • Value-At-Risk — La Value at Risk 10% d un portefeuille suivant une distribution normale La VaR (de l anglais Value at Risk, mot à mot : « valeur sous risque ») est une notion utilisée généralement pour mesurer le risque de marché d un portefeuille …   Wikipédia en Français

  • Value At Risk — (VaR) стоимостная мера риска. Распространено общепринятое во всём мире обозначение «VaR». Это выраженная в денежных единицах оценка величины, которую не превысят ожидаемые в течение данного периода времени потери с заданной вероятностью. Также… …   Википедия

  • Value at risk — La Value at Risk 10 % d un portefeuille suivant une distribution normale La VaR (de l anglais value at risk, mot à mot : « valeur sous risque ») est une notion utilisée généralement pour mesurer le risque de marché d un… …   Wikipédia en Français

  • value at risk — alue at risk ( VAR) The amount or percentage of value that is at risk of being lost from a change in prevailing interest rates (similarly defined for things other than interest rates as well). The sensitivity of the value of a single financial… …   Financial and business terms

  • value-at-risk — VAR A measure of risk developed at the former US bank J. P. Morgan Chase in the 1990s, now most frequently applied to measuring market risk and credit risk. It is the level of losses over a particular period that will only be exceeded in a small… …   Accounting dictionary

  • value-at-risk — VAR A measure of risk developed at the former US bank J. P. Morgan Chase in the 1990s, now most frequently applied to measuring market risk and credit risk It is the level of losses over a particular period that will only be exceeded in a small… …   Big dictionary of business and management

  • value-at-risk — rizikos vertė statusas Aprobuotas sritis Finansai apibrėžtis Finansinių priemonių portfelio galimų nuostolių dėl rinkos kainos kitimo kiekybinis įvertinimo dydis tam tikru laikotarpiu su tam tikra tikimybe. atitikmenys: angl. value at risk vok.… …   Lithuanian dictionary (lietuvių žodynas)

  • value at risk — vertės pokyčio rizika statusas T sritis turto vertinimas apibrėžtis Didžiausio nuostolio tikimybė per nustatytą laikotarpį, grindžiama praeityje buvusių kainų tendencijų ir jų pokyčių statistine analize. atitikmenys: angl. value at risk šaltinis… …   Lithuanian dictionary (lietuvių žodynas)

  • Value and risk rating — Saltar a navegación, búsqueda Value And Risk Rating Value And Risk Rating S.A. es una Sociedad Calificadora de Valores que opera en Colombia, cuya finalidad es ofrecerle al mercado de capitales calificaciones de las diferentes compañías, con sus… …   Wikipedia Español

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”