Schwartz-Raum (allgemein)

Schwartz-Raum (allgemein)

Unter einem Schwartz-Raum versteht man in der Mathematik eine spezielle Klasse lokalkonvexer Vektorräume. Viele in den Anwendungen wichtige Räume, z. B. Räume differenzierbarer Funktionen, sind Schwartz-Räume. Der Raum \mathcal S der schnell fallenden Funktionen (s.u.) wird in der Distributionstheorie manchmal als der Schwartz-Raum bezeichnet, obwohl es sich lediglich um einen Vertreter der hier zu besprechenden Raumklasse handelt. Die Bezeichnung Schwartz-Raum (nach Laurent Schwartz) geht auf Alexander Grothendieck zurück. In der Literatur ist auch die Bezeichnung S-Raum verbreitet; ein vollständiger Schwartz-Raum wird dann auch ein \overline{S}-Raum genannt.

Inhaltsverzeichnis

Definition

Ein lokalkonvexer Raum E heißt ein Schwartz-Raum, wenn es zu jedem normierten Raum F und jedem stetigen linearen Operator A \colon E\rightarrow F eine Nullumgebung V\subset E gibt, so dass das Bild A(V) präkompakt ist.

Dies ist genau dann der Fall, wenn es zu jedem Banachraum F und jedem stetigen linearen Operator A:E\rightarrow F eine Nullumgebung V\subset E gibt, so dass \overline{A(V)} kompakt ist.

Eine innere Charakterisierung lautet:

Ein lokalkonvexer Raum E ist genau dann ein Schwartz-Raum, wenn es zu jeder Nullumgebung U\subset E eine Nullumgebung V\subset E gibt, so dass man zu jedem \epsilon > 0 endlich viele Punkte x_1,\ldots,x_n \in E mit \textstyle V\subset \bigcup_{j=1}^n(x_j+\epsilon U) finden kann.

Präkompakte Halbnormen

Weiter lassen sich Schwartz-Räume über die stetigen Halbnormen charakterisieren. Eine Halbnorm p auf einem lokalkonvexen Raum E heißt präkompakt, falls es eine Nullfolge n)n in \mathbb K und eine gleichstetige Folge (fn)n im starken Dualraum E\,' gibt, so dass für alle x\in E die Ungleichung \textstyle p(x) \le \sup_{n\in \mathbb N}|\zeta_n f_n(x)| gilt. (Dabei heißt die Folge (fn)n gleichstetig, wenn es eine stetige Halbnorm q auf E gibt mit |f_n(x)| \le q(x) für alle x\in E und n\in {\mathbb N}.)

Präkompakte Halbnormen sind stetig, denn mit obigen Bezeichnungen erhält man die Abschätzung \textstyle p(x) \le \sup_{n\in \mathbb N}|\zeta_n f_n(x)| \le \sup_{n\in \mathbb N}|\zeta_n|\cdot q(x). Die Umkehrung ist im Allgemeinen nicht richtig, sie stellt vielmehr eine Charakterisierung der Schwartz-Räume dar, denn es gilt:

Ein lokalkonvexer Raum E ist genau dann ein Schwartz-Raum, wenn jede stetige Halbnorm präkompakt ist.

Beispiele

  • Unter den normierten Räumen sind genau die endlich-dimensionalen Räume Schwartz-Räume.
  • Jeder vollständige nukleare Raum ist ein Schwartz-Raum.
  • Sei {\mathcal S}({\mathbb R}^n) der Raum aller Funktionen f:{\mathbb R}^n \rightarrow {\mathbb R}, für die alle Suprema \textstyle p_{k,m}(f) := \sup_{|\alpha|\le k}\sup_{x\in {\mathbb R}^n} |(1+|x|^2)^m D^\alpha f(x)| endlich sind. Dabei wurde von der Multiindex-Schreibweise Gebrauch gemacht. Der Raum {\mathcal S}({\mathbb R}^n) mit den Halbnormen \{p_{k,m};\,k,m\in{\mathbb N}_0\} heißt Raum der schnell fallenden Funktionen. Er ist ein Schwartz-Raum und wird manchmal auch als der Schwartz-Raum bezeichnet.
  • Jede Folge (a_n)_n\in \ell^1 definiert durch die Festlegung \textstyle (x_n)_n \mapsto \sum_{n=1}^\infty a_nx_n ein lineares Funktional auf dem Folgenraum \ell^\infty der beschränkten Folgen. Diesen Raum versehe man mit der feinsten lokalkonvexen Topologie, so dass der Dualraum bzgl. dieser Identifikation mit \ell^1 zusammenfällt. Nach dem Satz von Mackey-Arens gibt es eine solche Topologie, die Mackey-Topologie \tau(\ell^\infty,\ell^1). Der lokalkonvexe Raum (\ell^\infty,\tau(\ell^\infty,\ell^1)) ist ein vollständiger Schwartz-Raum, der nicht nuklear ist.

Eigenschaften

  • Unterräume und Quotientenräume nach abgeschlossenen Unterräumen von Schwartz-Räumen sind wieder Schwartz-Räume.
  • Beliebige Produkte von Schwartz-Räumen sind wieder Schwartz-Räume.
  • Vollständige quasitonnelierte Schwartz-Räume sind Montel-Räume. Es gibt aber Fréchet-Montel-Räume, die keine Schwartz-Räume sind.
  • Ein lokalkonvexer Raum E ist genau dann ein Schwartz-Raum, wenn es eine Menge I gibt, so dass E topologisch isomorph zu einem Unterraum von (\ell^\infty,\tau(\ell^\infty,\ell^1))^I ist. In diesem Sinne ist (\ell^\infty,\tau(\ell^\infty,\ell^1)) ein universeller Schwartz-Raum.

Vollständige Schwartz-Räume

Vollständige Schwartz-Räume haben besondere Eigenschaften und lassen weitere Charakterisierungen zu. Ist p eine stetige Halbnorm auf dem lokalkonvexen Raum E, so ist N_p := \{x\in E; p(x)=0\} ein abgeschlossener Unterraum von E und durch \|x+N_p\|_p := p(x) wird eine Norm auf dem Faktorraum Ep: = E / Np erklärt. Die Vervollständigung dieses normierten Raums wird mit Bp bezeichnet. Ist q eine weitere stetige Halbnorm mit p \le q, so definiert x+N_q\mapsto x+N_p einen stetigen linearen Operator E_q \rightarrow E_p, der sich stetig zu einem linearen Operator \kappa_{qp}:B_q\rightarrow B_p fortsetzen lässt. Die Bp heißen die lokalen Banachräume und die Operatoren κqp heißen kanonische Abbildungen von E. Mit diesen Begriffen können vollständige Schwartz-Räume wie folgt charakterisiert werden:

Ein lokalkonvexer Raum ist genau dann ein vollständiger Schwartz-Raum, wenn es zu jeder stetigen Halbnorm p eine weitere stetige Halbnorm q \ge p gibt, so dass die kanonische Abbildung \kappa_{qp}:B_q\rightarrow B_p ein kompakter Operator ist.

Es genügt natürlich, sich auf ein gerichtetes System erzeugender Halbnormen zu beschränken.

In vollständigen Schwartz-Räumen gilt der Satz von Bolzano-Weierstraß, das heißt, eine Menge ist genau dann kompakt, wenn sie abgeschlossen und beschränkt ist.

Literatur

  • K. Floret, J. Wloka: Einführung in die Theorie der lokalkonvexen Räume. Lecture Notes in Mathematics 56, 1968.
  • H. H. Schaefer: Topological Vector Spaces. Springer, 1971.
  • H. Jarchow: Locally Convex Spaces. Teubner, Stuttgart 1981.
  • Yau-Chuen Wong: Introductory Theory of Topological Vector Spaces. Marcel Dekker Ltd., 1992.
  • R. Meise, D. Vogt: Einführung in die Funktionalanalysis. Vieweg, 1992. ISBN 3-528-07262-8

Wikimedia Foundation.

Игры ⚽ Нужен реферат?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Schwartz — Relative Häufigkeit des Familiennamens Schwartz in Deutschland (Stand: Mai 2010) Schwartz ist ein Familienname. Er ist eine Nebenform von Schwarz. Inhaltsverzeichnis A B C …   Deutsch Wikipedia

  • Köthe-Raum — Ein Folgenraum ist ein in der Mathematik betrachteter Raum, dessen Punkte Zahlenfolgen sind. Viele in der Funktionalanalysis auftretende Vektorräume sind Folgenräume oder können durch solche repräsentiert werden. Zu den Beispielen zählen u.a. die …   Deutsch Wikipedia

  • Lokal konvexer Raum — Lokalkonvexer Vektorraum berührt die Spezialgebiete Mathematik Topologie Abstrakte Algebra Lineare Algebra Analytische Geometrie Funktionalanalysis ist Spezialfall von …   Deutsch Wikipedia

  • Hardy-Raum — In der Funktionentheorie ist ein Hardy Raum Hp ein Funktionenraum holomorpher Funktionen auf bestimmten Teilmengen von . Hardy Räume sind die Entsprechungen der Lp Räume in der Funktionalanalysis. Sie werden nach Godfrey Harold Hardy benannt, der …   Deutsch Wikipedia

  • Lokal konvex — Lokalkonvexer Vektorraum berührt die Spezialgebiete Mathematik Topologie Abstrakte Algebra Lineare Algebra Analytische Geometrie Funktionalanalysis ist Spezialfall von …   Deutsch Wikipedia

  • Lokalkonvex — Lokalkonvexer Vektorraum berührt die Spezialgebiete Mathematik Topologie Abstrakte Algebra Lineare Algebra Analytische Geometrie Funktionalanalysis ist Spezialfall von …   Deutsch Wikipedia

  • Satz von Komura — Unter einem nuklearen Raum versteht man in der Mathematik eine spezielle Klasse lokalkonvexer Vektorräume. Viele in den Anwendungen wichtige Räume, z. B. Räume differenzierbarer Funktionen, sind nuklear. Während normierte Räume, insbesondere… …   Deutsch Wikipedia

  • Satz von Komura-Komura — Unter einem nuklearen Raum versteht man in der Mathematik eine spezielle Klasse lokalkonvexer Vektorräume. Viele in den Anwendungen wichtige Räume, z. B. Räume differenzierbarer Funktionen, sind nuklear. Während normierte Räume, insbesondere… …   Deutsch Wikipedia

  • Satz von Kōmura-Kōmura — Unter einem nuklearen Raum versteht man in der Mathematik eine spezielle Klasse lokalkonvexer Vektorräume. Viele in den Anwendungen wichtige Räume, z. B. Räume differenzierbarer Funktionen, sind nuklear. Während normierte Räume, insbesondere… …   Deutsch Wikipedia

  • Montelraum — Der mathematische Begriff Montel Raum bezeichnet eine spezielle Klasse lokalkonvexer Räume. Ihren Namen tragen sie nach dem Satz von Montel aus der Funktionentheorie. Viele lokalkonvexe Räume aus der Theorie der Distributionen sind Montelräume.… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”