Tycho Brahe

Tycho Brahe
Tycho Brahe mit dem Elefanten-Orden
Signatur Brahes: Tÿcho Brahe

Tycho Brahe anhören?/i, oder Tyge Ottesen Brahe, auch bekannt als Tycho de Brahe (* 14. Dezember 1546 auf Schloss Knutstorp, Schonen; † 24. Oktober 1601 in Prag) war ein dänischer Adliger und einer der bedeutendsten Astronomen.

Inhaltsverzeichnis

Leben

Das tychonische Weltbild nach Brahe in einer Darstellung von Andreas Cellarius 1708

Tycho Brahe war adliger Abstammung.[1] Er heiratete 1573 eine Bürgerliche: Kirstine Barbara Jörgensdatter, den Quellen nach eine Tochter des Pastors von Kågeröd. Sie bekamen acht, andere Schriften nennen neun, Kinder.[2] Nach Tychos Tod kaufte Kirstine ein Gut in Böhmen, das sie noch drei Jahre, bis zu ihrem Tode, bewohnte. Tycho und Kirstine wurden Seite an Seite in der Teynkirche in Prag beigesetzt.

Am 19. April 1559 wurde Brahe an der Universität Kopenhagen in den Fächern Philosophie und Rhetorik immatrikuliert. In den folgenden Jahren belegte er an den Universitäten Leipzig, Wittenberg, Rostock und Basel die Fächer Jurisprudenz und Geistes- sowie Naturwissenschaften. In Leipzig begann er heimlich unter anderen bei Johannes Hommel später bei Valentin Thau mit astronomischen Studien. Unzureichende Beobachtungsmethoden damaliger Sternwarten führten dazu, dass er sich frühzeitig mit der Methodik und den Instrumenten zur Höhenpräzisionsmessung der Himmelskörperpositionen beschäftigte.

Im Alter von 20 Jahren verlor Brahe bei einem Duell, dessen Grund der Streit um eine mathematische Formel mit einem Kommilitonen war, einen Teil seiner Nase. Er trug der Überlieferung nach eine Nasenprothese aus einer Gold-Silber-Legierung, die er mit einer Salbe anklebte. Als man jedoch 1901 sein Grab öffnete und den Schädel untersuchte, um Hinweise auf die besagte Prothese zu finden, fand man Reste von Kupfersalzen an der entsprechenden Stelle, die eher auf eine dünne Kupferfolie hindeuteten als auf eine schwerer zu tragende Prothese aus einer Goldlegierung.[3]

Er beobachtet 1572 eine Supernova, einen „Neuen Stern“, wie er ihn beschrieb, „ein Wunder, wie es seit Anbeginn der Welt nicht gesehen wurde“. Dies machte ihn unter den Astronomen in ganz Europa berühmt.

König Friedrich II. von Dänemark und Norwegen finanzierte die Sternwarten Uraniborg und Stjerneborg auf der damals noch dänischen Öresundinsel Ven vor Landskrona, an denen Brahe 21 Jahre lang forschte. Brahe baute nicht nur alle benötigten Instrumente selbst, sondern druckte auch seine eigenen Bücher.

Tychos Mauerquadrant, 1598

Tycho Brahe war ein herausragender beobachtender Astronom. Zu seiner Zeit gab es noch kein Teleskop. Seine Beobachtungen der Fixstern- und Planetenpositionen, die damals mit Abstand die präzisesten waren und mit einer Genauigkeit von zwei Bogenminuten auch heute nicht ohne weiteres zu erreichen sind, führte er mit Hilfe eines großen Mauerquadranten durch.[4] Aufgrund von Widersprüchen der Planetenbewegungen in den damals vorherrschenden Weltsystemen entwickelte er einen Kompromiss zwischen dem ptolemäisch-geozentrischen und dem kopernikanisch-heliozentrischen Planetensystem, das tychonisches Weltbild genannt wurde.

Nach dem Tod Friedrichs II. (1588) kürzte sein Nachfolger König Christian IV. die finanziellen Mittel, weshalb Brahe im Oktober 1597 auf Einladung seines Freundes Heinrich Rantzau in eines von dessen Gutshäusern, nämlich in die Wandesburg bei Hamburg, zog.

Im September 1598 verließ Brahe Wandsbek mit seinen Söhnen und Studenten und wechselte 1599 nach Prag. Kaiser Rudolf II. hatte ihm eine Stelle als Hofmathematiker angeboten und wollte ihm dort eine neue Sternwarte erbauen lassen.

Brahe starb jedoch, bevor der Bau beendet war. Brahe hielt sich vom August 1599 bis Juni 1600 im ruhigeren Städtchen Benátky nad Jizerou (Venedig an der Iser) auf.

Die Supernova von 1572

Eine Sonnenfinsternis im Jahr 1560 weckte Tychos großes Interesse an der Astronomie, und so begann der damals 13-Jährige sich in dieses Fach zu vertiefen. Er las jedes Buch, das er bekommen konnte, und obwohl die Verwandtschaft eine andere Ausbildung für ihn vorgesehen hatte, stellte er immer wieder Sternbeobachtungen an. Am Abend des 11. November 1572 blickte Tycho mit gewohnter Aufmerksamkeit zum Himmel. Erstaunt sah er dort im Sternbild Kassiopeia einen Stern – so hell wie die Venus – der dort nicht hingehörte. Ein Fixstern konnte es nicht sein, denn der Fixsternhimmel war ewig und unveränderlich, so die damalige Überzeugung. Aber ein Planet konnte es auch nicht sein, denn er zeigte keinerlei Ortsveränderung. Ein Jahr, nachdem der Stern erschienen war, verblasste er schließlich. Das Ereignis erregte in weiten Kreisen größtes Aufsehen, und Tycho verfasste sogleich eine Schrift De nova et nullius ævi memoria prius visa Stella, in der er seine Beobachtungen beschrieb. Aus der Unveränderlichkeit der Position des neuen Sterns schloss er darin kühn, dass er der Fixsternebene angehören musste. Seine Schrift machte ihn unter den Astronomen in ganz Europa bekannt und öffnete ihm als einem, der Aristoteles nicht nur widersprochen, sondern ihn auch widerlegt hatte, alle Türen. Zwar war eine Supernova bereits 1054 von Chinesen beobachtet worden, aber die mittelalterlichen europäischen Gelehrten der christlich-theologischen und wissenschaftlichen Scholastik hatten davon keine Kenntnis.

Brahes Uraniborg und Stjerneborg

Schloss, ohne Nebengebäude, und Gartenanlage von Uraniborg

Tycho unternahm Reisen durch ganz Europa, um seine Ausbildung in der Jurisprudenz zu vervollständigen. Er benutzte diese Reisen aber auch, um möglichst vielen Astronomen zu begegnen. Tycho war überzeugt, dass in dem Zeitalter, in dem er lebte, wissenschaftlicher Fortschritt in der Astronomie nur durch sorgfältigste Beobachtung möglich war. Dies war damals eine ungewöhnliche Ansicht, galt göttliche Eingebung doch als einzige Form der Erkenntnis. Wie sollte man durch Messen eines Wieviel das Warum erfahren können?, fragte man sich. So kam er auch nach Kassel zu dem für Sternkunde begeisterten Landgrafen Wilhelm IV., der Tychos besondere Begabung offensichtlich erkannte und Friedrich II. von Dänemark auf Tycho aufmerksam machte, Grund genug für den König, Tycho Brahe die Öresundinsel Ven auf Lebenszeit für seine Beobachtungen zur Verfügung zu stellen. Außerdem übernahm er alle Kosten für erforderliche Instrumente, Gebäude und Mitarbeiter, was immerhin 1–2 % der königlichen Einnahmen ausmachte. Im August 1576 wurde der Grundstein zu einer der berühmtesten Sternwarten aller Zeiten gelegt. 1580 wurde sie fertiggestellt.

Schloss Uraniborg aus Joan Blaeu: Der große Atlas, 1663

Brahe nannte seine Forschungsstätte in Anlehnung an Urania, die Muse der Sternkunde aus der griechischen Mythologie[5], Uraniborg. Auf Grund seines Erfindungsreichtums und seiner Beobachtungsgabe und Friedrichs großzügiger finanzieller Unterstützung wurde es das wichtigste Observatorium der damaligen Zeit, eine Wissensfabrik der beobachtenden Astronomie. Es enthielt nicht nur die für die Instrumente notwendigen vielfältigen Baulichkeiten und Wohn- und Bibliotheksräume, sondern auch Wirtschaftsgebäude, ein chemisches Laboratorium, mechanische Werkstätten und Handwerksbetriebe, ebenso eine eigene Buchdruckerei und sogar eine eigens gebaute Papiermühle. Vom Bau des eigenen Instrumentariums über die nächtlichen Sternbeobachtungen bis zum Druck der Forschungsergebnisse, alles war auf Uraniborg beheimatet.

Tycho Brahe stellte bald fest, dass Uraniborg für seine neu entworfenen Präzisionsinstrumente nicht groß genug war, und zudem auf instabil sandigem Untergrund stand. Außerdem lieferten oberirdische Temperaturschwankungen und Winde weniger gute Beobachtungsresultate als ein unterirdisches Observatorium[6]. So baute er im Jahr 1584, 100 Meter südlich von Uraniborg eine zweite, jetzt unterirdische Sternwarte auf Ven und nannte sie Stjerneborg (deutsch: Sternenburg) mit teils halb, teils ganz in den Boden abgesenkten Beobachtungsräumen. Über dem Nordeingang ließ Brahe einen Wahlspruch anbringen, der in Stein gemeißelt den Eingang zu Stjerneborg zierte, und lautete:

„NEC FASCES, NEC OPES, SOLA ARTIS SCEPTRA PERENNANT[7]

„Weder hohe Ämter, noch Macht, einzig die Zepter der Wissenschaft überdauern“

Observatorium Stjerneborg unweit von Uraniborg

In einer Zeit, in der Frauen de facto von der Ergreifung eines naturwissenschaftlichen Berufs ausgeschlossen waren, gelang es Sophie Brahe, der Schwester von Tycho, sich eigenständig Kenntnisse der Astronomie anzueignen. Gegen alle Konvention arbeitete sie häufig mit ihrem Bruder zusammen. In Uraniborg führten sie gemeinsam Himmelsbeobachtungen durch und verfassten einen neuen Fixsternkatalog von tausend Gestirnstandorten.

Mit dem Tod seines Mäzens Friedrichs II. im Jahr 1588 und der Ernennung Christians IV. zum neuen König schwand Brahes Einfluss am königlichen Hof, und es kam mehr und mehr zu unangenehmen Kürzungen seines Etats. So entschloss er sich nach 21 Jahren, im Jahr 1597, Ven in Richtung Holstein zu verlassen. Das Ende von Uraniborg war gekommen, denn nicht nur er selbst verließ Ven, er nahm auch alle seine dort gebauten Instrumente mit.

Der Komet von 1577

Während des Aufbaus von Uraniborg beschäftigte ein Ereignis am Himmel die Astronomen: Der Komet von 1577.

Uraniborg war schon teilweise einsatzbereit, und auch Tycho wandte sich dem neuen Objekt am Himmel zu. Es entwickelte sich – begünstigt durch die lange Sichtbarkeitsdauer des Kometen – eine briefliche Diskussion und ein Austausch von Beobachtungsergebnissen zwischen den Astronomen. Besonders interessierte Tycho hier die Parallaxe des Kometen, also die scheinbare Positionsänderung eines Objekts auf dem Fixsternhintergrund, wenn der Beobachter seine Position verschiebt. Denn Kometen galten zu seiner Zeit und davor nicht als Himmelskörper. Sie waren bloße Erscheinungen oder auch atmosphärische Störungen innerhalb der so genannten sublunaren Himmelsgegend. Nur in dieser Gegend überhaupt konnten Veränderungen stattfinden, so die allseits akzeptierte Lehrmeinung. Doch Tycho war ein neutraler Beobachter, er prüfte alle verfügbaren Messungen, seine eigenen und die seiner Kollegen immer wieder. Das Ergebnis war für ihn eindeutig: Der Komet konnte nicht Teil der sublunaren Region sein, sondern musste wegen fehlender Parallaxe weit außerhalb der Atmosphäre sein, ein Teil der planetaren Himmelsgegend also. Mehr noch: Der Komet bewegte sich so, dass er die Planetensphären zwangsläufig durchstoßen musste, eine Bewegungshemmung durch diese planetentragenden Schalen konnte aber nicht gemessen werden.

Von da an sah Tycho Kometen als Teil des planetaren Wirkungsgefüges an, außerdem wuchsen seine Zweifel an dem ptolemäischen Weltbild. Seine Erkenntnis setzte sich aber nicht gleich durch, selbst Galilei spottete noch ein halbes Jahrhundert später über die „Tychonischen Affenplaneten“,[8] wenn er Kometen meinte. Erst Johannes Kepler erkannte die wahre Bedeutung dieser Entdeckung: Planeten und Kometen als sich frei bewegende Körper im Weltenraum.

Das Instrumentarium

Auf seinen Reisen durch Europa kam Tycho Brahe 1568 auch nach Augsburg. Fast 3 Jahre stellte Brahe hier Sternbeobachtungen an und lernte eines Tages auch den Augsburger Patrizier, Bürgermeister und begeisterten Astronom Paul Hainzel kennen. Hainzel war fasziniert von der Idee eines Präzisionsgroßinstruments mit nie gekannter Genauigkeit. Auf eigene Kosten ließ er Brahe in Göggingen südlich von Augsburg einen riesigen Quadranten, mit einem Radius von 6,4 Meter[9] aus Eichenholz anfertigen. Durch die Größe konnte die Skala aus Messing auf 10 Bogensekunden genau unterteilt werden. Brahe selbst führte allerdings mit dem Quadranten keine Beobachtungen durch, er hatte Augsburg bereits verlassen. Der Augsburger Quadrant wurde 4 Jahre später von einem Sturm zerstört.

Tycho Brahes Forschungen markieren das Ende und den Höhepunkt einer fast 2000 Jahre langen Periode der systematischen Himmelsbeobachtung, die ohne die Erfindung der Linse auskommen musste. Brahes Instrumente sind deshalb durch die Verwendung des Visierprinzips gekennzeichnet. In Kassel bei Wilhelm IV. hatte er dessen voll metallene Instrumente studiert und die bessere Bearbeitungsmöglichkeit von Metall in Hinblick auf möglichst kleine Toleranzen erkannt, außerdem konnte die Messgenauigkeit aller Skalen auf einfache Weise erhöht werden: Je größer der Maßstab, desto präziser konnte man die Instrumente ablesen. So entschloss er sich, die größten und präzisesten astronomischen Instrumente zu bauen, die bis dahin von Menschen entworfen worden waren.

Eine Armillarsphäre nach Tycho Brahe

Tycho baute in Uraniborg ein gutes Dutzend Instrumente. Eines der bekanntesten und präzisesten war der Mauerquadrant, auch tychonischer Quadrant genannt, mit einem Radius von 2 Metern. Er war fest an einer Mauer installiert und genau nach Süden ausgerichtet. Er verwendete eine spezielle Art transversal gerasterter Zickzacklinien auf der Innenseite des Quadranten. Damit war es möglich, Auflösungen der Deklination bis auf 10 Bogensekunden genau zu erreichen.

Ein weiteres bekanntes Instrument war eine riesige Armillarsphäre aus Eisen mit einem Durchmesser von 2,9 Metern. Sie diente Brahe der genauen Messung von Koordinaten am Himmel und der Darstellung der Bewegung von Himmelskörpern zur besseren Anschauung. Weitere Geräte waren unter anderen verschiedene portable Quadranten und kleinere Armillarsphären sowie eine Reihe astronomischer Sextanten und Triquetren.

Brahe erkannte auch als einer der ersten Wissenschaftler den Wert von Mehrfachbeobachtungen. Er beschäftigte deshalb einen festen Stamm von Mitarbeitern, die alle ein und dasselbe Ereignis mit verschiedenen Instrumenten zeitgleich beobachteten. Jedoch waren die einfachsten Grundlagen der Stochastik und einfache statistische Verfahren noch unbekannt. Was für uns heute leicht erscheint, waren mühsame Umrechnungen der sphärischen Trigonometrie, die oft ein mehr als ungewisses Ergebnis lieferten. Dennoch gelang es Brahe mit Beharrlichkeit und Sorgfalt, Ergebnisse von immer größerer Genauigkeit zu erhalten.

Bald nach Tycho Brahes Tod begann mit der Erfindung des Fernrohrs durch Hans Lipperhey im Jahr 1608 ein neues Zeitalter in der Astronomie. So endete mit seinem Tod auch die Arbeit mit dem umfangreichen Instrumentarium. Die wertvollen Geräte wurden durch nachfolgende Kriege teils zerstört, als Kriegsbeute verschleppt, oder verrotteten in unterirdischen Gewölben, in die sie Kaiser Rudolf II. in Prag zur besseren Sicherheit bringen ließ. Einzig die große Armillarsphäre nahm eine abenteuerlichere Reise über ein Jesuitenkloster in Schlesien und von dort zurück in die königliche Akademie von Kopenhagen, wo sie in der großen Feuersbrunst von 1728 verbrannte.[10]

Brahes Beobachtungsdaten waren aber, als die verlässlichsten, dennoch viele Jahrzehnte unverzichtbar[11].

Tycho Brahes Weltsystem

Weltsystem nach Paul Wittich und Tycho Brahe: Im Zentrum der Welt steht die Erde, jedoch bewegen sich die anderen Planeten um die Sonne

Brahe misstraute dem heliozentrischen Weltbild des Nikolaus Kopernikus. In einem Brief an den Mathematiker Christoph Rothmann, der im Dienst von Wilhelm IV. stand, erhob er folgenden Einwand gegen die Erdbewegung: „Wenn sich die Erde tatsächlich von West nach Ost dreht, dann muss eine Kanonenkugel, die in Richtung der Erddrehung geschossen wird, viel weiter fliegen als ein in entgegengesetzter Richtung abgefeuertes Geschoss.“ Rothmann antwortete, dass sowohl Geschoss als auch Kanone an der Erdbewegung teilnähmen und damit sein Einwand hinfällig sei. Dies widersprach aber der damals geltenden aristotelischen Bewegungsauffassung. Andererseits kannte Brahe als Präzisionsbeobachter die Mängel des alten ptolemäisch-geozentrischen Weltsystems, speziell die Probleme der Epizykeltheorie.

So entwickelte Brahe einen Kompromissvorschlag, ein eigenes Weltsystem, das ptolemäisch-geozentrische und kopernikanisch-heliozentrische Aspekte vereinte und nach seiner Meinung die Tatsachen besser darstellte: Im Zentrum ruht, wie im ptolemäischen Weltbild auch, die Erde. Um sie kreisen Mond und Sonne, aber alle anderen Himmelskörper bewegen sich wie bei Kopernikus um die Sonne. Einzig die Sphäre mit den Fixsternen bewegt sich in 24 Stunden einmal um die Erde. Damit sollte ein Großteil der Probleme der Epizykeltheorie beseitigt sein. Tycho Brahe sah es als seine Lebensaufgabe an, dieses Weltsystem mit immer genaueren Beobachtungen zu belegen, er selbst arbeitete aber wegen seiner eingeschränkten mathematischen Fähigkeiten keine Theorie der Bewegung aus. Vor diesem Hintergrund ist sein Weltbild eher mit den auf Beobachtung basierenden Denksystemen eines Eudoxos oder Aristarchos von Samos vergleichbar als mit den theoriebasierten Systemen eines Claudius Ptolemäus oder Kopernikus.

Tatsächlich gelang es erst James Bradley im Jahr 1729 mit der stellaren Aberration die Eigenbewegung der Erde gegenüber der Fixsternsphäre nachzuweisen, und damit das Weltsystem von Brahe zu widerlegen. Bis dahin waren sämtliche Beobachtungen wie etwa die der vier Venus-Phasen auch mit dem Weltmodell von Brahe kompatibel.

Über die Urheberschaft seines Weltsystems entspann sich ein Streit mit dem Astromen Nicolaus Reimers, der, ebenfalls mit Heinrich Rantzau befreundet, Brahe in Uraniborg besucht hatte. Die zentrale Rolle von Paul Wittich wurde dabei von Owen Gingerich untersucht.[12]

Begegnung mit Kepler

Schloss Benatek, wo Brahe und Kepler einander erstmals begegneten.

Tycho Brahe war beeindruckt vom Gedankenreichtum des keplerschen Erstlingswerks Mysterium Cosmographicum (Weltgeheimnis), lehnte aber dessen auf Kopernikus aufbauende Resultate ab. Er lud Kepler zu sich nach Prag ein; er hoffte, dass es, mit Hilfe von Brahes jahrzehntelangen Präzisionsbeobachtungen, Keplers Inspiration und theoretischer Befähigung gelingen werde, dem tychonischen System zum Durchbruch zu verhelfen.

Zum ersten Mal begegneten sie einander auf dem unweit von Prag gelegenen Schloss Benatek, wo Brahe zu dieser Zeit residierte, am 4. Februar 1600. Die Zusammenarbeit gestaltete sich überaus schwierig, zu unterschiedlich waren beide Charaktere. Brahe, eher jähzornig und herrschsüchtig, erschwerte dem 25 Jahre jüngeren, empfindsamen Kepler oft die Arbeit. Jedoch erkannte Kepler die große Bedeutung der umfangreichen braheschen Beobachtungen, dieser aber rückte gerade soviel davon heraus, wie Kepler zur Bearbeitung der ihm von Brahe gestellten Aufgaben unbedingt benötigte.

Die Rudolphinischen Tafeln

Titelseite der Rudolfinischen Tafeln

Nach Brahes Tod im Oktober 1601 wurde Kepler, der kurz zuvor dessen Assistent geworden war, zu seinem Nachfolger am Hof von Rudolph II. ernannt. Damit ging auch ein gewichtiges, noch unvollständiges Werk an Kepler über: die im Auftrag des Kaisers zu erstellenden „Rudolphinischen Tafeln“. Sie sollten die „Alfonsinischen“ und die neueren „Prutenischen Tafeln“ ersetzen. Kepler erhielt endlich auch die vollständigen Beobachtungsdaten Brahes, insbesondere die des Planeten Mars, den Brahe intensiv und über längere Zeit beobachtet hatte. Kepler, endlich im Besitz des unverzichtbaren Beobachtungsschatzes, erkannte, dass die Positionsdaten des Planeten Mars um 8 Bogenminuten von der kopernikanischen kreisförmigen Bahn abwichen. Diese unscheinbaren 8 Bogenminuten wiesen Kepler den richtigen Weg, die fast 2000 Jahre gültige Auffassung von kreisförmigen Bahnen fallen zu lassen[13]. Mit Hilfe der braheschen Beobachtungen konnte Kepler schließlich die elliptische Bahnbewegung des Planeten Mars (später auch der anderen Planeten) nachweisen und sogar die Geschwindigkeit des Planeten genau berechnen.

Bedeutung

Brahe war vor allem Beobachter. Sein nach seinen Anweisungen gebautes, für die damalige Zeit hervorragendes Instrumentarium, und auch die personelle Ausstattung der ihm zur Verfügung stehenden Sternwarten waren wichtige Voraussetzungen für seine Erfolge als Astronom.

Brahe häufte ein gewaltiges Beobachtungsmaterial an. Die Sorgfalt und Genauigkeit seiner Beobachtungen waren verblüffend. Durch Beobachtung der Sonne und einfache Peilung nach dem Visierprinzip über Kimme und Korn gelang ihm eine wesentlich verbesserte Bestimmung der Länge des Jahres, die er auf 365 Tage 5 Stunden 48 Minuten und 45 Sekunden ermittelte.[14] Die Differenz zum heutigen Wert des tropischen Jahres beträgt weniger als eine Sekunde. Zu Recht gilt er deshalb als einer der bedeutendsten Astronomen.

Tycho Brahe hatte entscheidenden Einfluss auf das Wissenschaftsideal späterer Generationen und begründete mit seiner Arbeitsmethodik des immer exakteren Messens und immer wieder Nachprüfens den Arbeitsstil und die Methodik moderner Wissenschaft. Obwohl noch teils in Astrologie und christlicher Dogmatik beheimatet – jedoch weit weniger als sein Nachfolger Kepler –, war er in seiner wissenschaftlichen Vorgehensweise seiner Zeit um Jahrzehnte, wenn nicht Jahrhunderte, voraus.

Sein Beobachtungsschatz, festgelegt unter anderem in den Rudolphinischen Tafeln und später herausgegeben von Kepler, war Grundlage nicht nur für Keplers Theorien, sondern auch für Isaac Newton, der seine Theorie der Gravitation fast ein Jahrhundert später auf diese Beobachtungswerte stützte. Obwohl Brahe noch kein Fernglas kannte, waren seine Messwerte die verlässlichsten auch noch viele Jahrzehnte nach ihm.

Als Ironie der Geschichte erscheint es, dass gerade Brahe, der durch seine Arbeit ungewollt den Grundstein für den weiteren Ausbau und die Vervollständigung des heliozentrischen Weltbildes gelegt hatte, dieses Zeit seines Lebens ablehnte. Erhalten hat sich sein eigenes Weltbild nur in der Namensgebung der Exzentrizität in der Astronomie.

Brahes Tod

Die Umstände von Brahes Tod sind bizarr und ungeklärt. Am 13. Oktober 1601 nahm er an einem Festbankett des Kaisers teil. Er musste der Überlieferung nach wegen starker Blasenschmerzen die Tafel frühzeitig verlassen. Als Grund dafür wurde ein Blasenriss durch Harnverhaltung vermutet, möglicherweise infolge der Hofetikette, die es den Gästen untersagte, sich vor dem Kaiser von der Tafel zu erheben. Brahe verstarb 10 Tage später nach schwerem Leiden.

Brahes engster Freund, der berühmte Arzt und Anatom Jan Jessenius, beschrieb den Krankheitsverlauf in seinen letzten Tagen so, dass Brahe zuletzt noch in großer Klarheit sehr viele Dinge ordnete und sich von allen verabschiedete. Er legte unter anderem auch fest, dass nach seinem Tod Johannes Kepler alle seine wissenschaftlichen Unterlagen durchsehen sollte, um diese abzuschließen. Kepler folgte seinem Wunsch und veröffentlichte die gesammelten Daten und Ergebnisse unter Tycho Brahes Namen.

Die Leichenrede für Tycho Brahe hielt Jan Jessenius. Brahes Grab befindet sich in der Teynkirche am Altstädter Ring in Prag.

Neuere Forschungen in den 1990er Jahren an Haarproben, die aus einer Exhumierung im Jahre 1901 stammten, ergaben eine hohe Quecksilberkonzentration, die tödlich gewesen sein könnte.[15] Mehrere Hypothesen könnten ihr Zustandekommen erklären: Entweder nahm Brahe ein quecksilberhaltiges Heilmittel ein, oder es handelte sich um eine Folgevergiftung aus dem Umgang mit Chemikalien – die Giftigkeit von Quecksilber war zu jener Zeit noch nicht bekannt und quecksilberhaltige Arzneimittel waren damals weit verbreitet.

Wegen des letztlich ungeklärt gebliebenen Todes von Tycho Brahe erlangte 2004 eine „Giftmord-Story“ des Journalistenehepaares Joshua und Anne-Lee Gilder eine gewisse Aufmerksamkeit. In ihrem spannend und vordergründig sachlich geschriebenen Buch[16] wird Kepler als Mörder mit hinterhältigem Charakter beschrieben. Die deutsche Kepler-Gesellschaft gab 2005 dazu eine Stellungnahme[17] heraus, in der die Giftmord-Story der Gilders als „absurd und abstrus“ dargelegt wird.

Am 15. November 2010 wurde Tycho Brahes Grab in der Teynkirche erneut geöffnet. Archäologen der Aarhus Universität in Dänemark wollen Haar- und Knochenproben untersuchen, um die Todesursache Brahes zu klären.[15]

Ehrungen

Der tiefe Krater Tycho in der Mitte des Bildes

Der Mondkrater Tycho und der Krater Tycho Brahe auf dem Mars wurden zum Gedenken nach Brahe benannt, ebenso der Asteroid (1677) Tycho Brahe.

Am 12. September 2006 wurde Tycho Brahe für seinen 11-monatigen Aufenthalt in Hamburg-Wandsbek ein Denkmal gegenüber dem Wandsbeker Rathaus errichtet[18]

Werke

  • De nova et nullius ævi memoria prius visa Stella. (deutsch: Vom neuen und nie zuvor gesehenen Stern), Kopenhagen 1573, erstes Buch über die Supernova von 1572 im Sternbild Kassiopeia.
  • Herausgeber Tycho Brahe: Diarium Astrologicum et Metheorologicum. (deutsch: Astrologisches und Meteorologisches Tagebuch), Uraniborg 1596, zusammengestellt von Brahes Schüler Elias Olsen Morsing,
  • De mundi aetheri recentioribus phaenomenis. (deutsch: In der ätherischen Welt neulich beobachtete Phänomene), Uraniborg 1588.
  • Herausgeber Tycho Brahe: En Elementisch oc Jordisch Astrologia. Uraniborg 1591, Bauernregeln über das Wetter, Verfasser waren Brahes Buchdrucker.
  • Epistolarum Astronomicarum Liber Primus. (deutsch: Briefwechsel über Astronomie – Erstes Buch),Uraniborg 1596 (Erster Teil Brahes Briefewechsel, der zweite wurde mit Astronomiae Instauratae Progymnasmata herausgegeben),
  • Astronomiae Instauratae Mechanica. (deutsch: Die Neuere Astronomische Instrumentenlehre), Wandsbek 1598 (Reprint: KLP Koniasch Latin Press, Prag, 1996, ISBN 80-85917-23-8), Originalausgabe zu finden in der Digital Library der Lehigh University), Beschreibungen und Bilder von Gebäuden und Instrumenten auf Ven als auch selbstbiographische Anteile.
  • Stellarum octavi orbis inerrantium accurata restitutio. Wandsbek 1598.
  • Herausgeber Johannes Kepler: Astronomiae Instauratae Progymnasmata. (deutsch: Neuere einführende Übungen der Astronomie) Prag 1602–1603, zweites Buch über die Supernova von 1572, größtenteils auf Uraniborg fertiggestellt, Originalausgabe zu finden in der Fondos Digitalizados der Universidad de la Sevilla fondosdigitales.us.es.
  • De mundi aetherei recentioribus phaenomenis, liber secundus. (deutsch: In der ätherischen Welt neulich beobachtete Phänomene, Zweites Buch), Frankfurt 1610,
  • Opera omnia sive astronomiae instauratae. Frankfurt 1648, in 15 Bänden (Reprint: Olms, Hildesheim 2001, ISBN 3-487-11388-0), umfangreiche Planeten-Daten Sammlung Tycho Brahes

Literatur

Biographien
  • Fritz Krafft: Tycho Brahe. In: Exempla historica. Epochen der Weltgeschichte in Biographien. Bd. 27. Fischer Tb., Frankfurt/M. 1984, S.85-142.
  • Victor E. Thoren: The Lord of Uraniborg: A Biography of Tycho Brahe. Cambridge University Press, Cambridge 1990, ISBN 978-0-521-03307-7, (online verfügbar in books.google.de)
  • John Louis Emil Dreyer: Tycho Brahe. A picture of scientific life and work in the sixteenth century. Edinburgh 1890. www.archive.org (online); deutsche Ausgabe: Karlsruhe 1894; Nachdruck: Vaduz 1999.
  • John Robert Christianson: On Tycho's Island. Cambridge University Press 2000 (online verfügbar in books.google.de)
Wissenschaftliche Abhandlungen
  • John Robert Christianson, Alena Hadravová, Petr Hadrava, Martin Šolc (Hrsg.): Tycho Brahe and Prague: Crossroads of European science. Harri Deutsch Verlag, Frankfurt am Main 2002, ISBN 3-8171-1687-X.
  • Owen Gingerich, Robert S. Westman: The Wittich Connection: Conflict and Priority in Late Sixteenth-century Cosmology. American Philosophical Society, 1988.(online verfügbar in books.google.de)
  • Michael Weichenhan: „Ergo perit coelum …“. Die Supernova des Jahres 1572 und die Überwindung der aristotelischen Kosmologie. Stuttgart 2004, ISBN 3-515-08374-X.
Historische Romane und Erzählungen
  • Alexandra Coelho Ahndoril: Der Astronom des Königs. List-Verlag, Berlin 2004, ISBN 3-548-60460-9.
  • Max Brod: Tycho Brahes Weg zu Gott. Ein Roman. Suhrkamp, Frankfurt am Main 1984, ISBN 3-518-36990-3.
  • Joshua Gilder: Der Fall Kepler. Mord im Namen der Wissenschaft. List TB bei Ullstein, Berlin 2005, ISBN 3-548-60638-5.
  • Alfred Otto Schwede: Ich war des Sternenjunkers Narr. Eine Erzählung um den Astronomen Tycho Brahe. Union-Verlag, Berlin 1983.

Weblinks

 Wikisource: Tycho Brahe – Quellen und Volltexte (Latein)
 Commons: Tycho Brahe – Album mit Bildern und/oder Videos und Audiodateien

Überblicksseiten:

Originalwerke:

Wissenschaftliche Sekundärquellen:

Einzelnachweise

  1. Vorfahren des Tycho Brahe – Skeel & Kannegaard Genealogy
  2. Nachfahren des Tycho Brahe – Tycho gifte sig med en ofrälse kvinna
  3. Per Sörbom: Tycho Brahe – A Passionate Astronomer, The Saab-Scania Griffin, 6. Auflage, 1992
  4. Tycho Brahe
  5. John Robert Christianson: On Tycho's Island, S.100
  6. Sternenburg – ein astronomisches Observatorium unter der Erdoberfläche, Beschreibung des Tycho Brahe Museums auf Ven
  7. John Louis Emil Dreyer: Tycho Brahe. A picture of scientific life and work in the sixteenth century Edinburgh 1890, Seite 105
  8. Walther Gerlach: Johannes Kepler. Der Ethiker der Naturforschung. Seite 90 oben (PDF)
  9. David Brewster: The martyrs of science; or, The lives of Galileo, Tycho Brahe, and Kepler New York 1841, Seite 125
  10. Brahe (Tycho). In: Zedlers Universal-Lexicon, Band 4, Leipzig 1733, Spalte 989–991.
  11. Pierre Gassendi: Tychonis Brahei, equitis Dani, Astronomorum Coryphaei, vitae Accessit Nicolai Copernici, Georgii Peurbachii, & Joannis Regiomontani, Astronomorum celebrium, Vita. Hagae Comitum (Den Haag), Vlacq (1655)GoogleBooks
  12. Owen Gingerich, Robert S. Westman: The Wittich Connection: Conflict and Priority in Late Sixteenth-century Cosmology, American Philosophical Society, 1988, GoogleBooks
  13. Walther Gerlach: Johannes Kepler – Der Ethiker der Naturforschung, München 1960
  14. Tycho Brahe: Astronomiae Instauratae Progymnasmata Seite 51
    J. S. T. Gehler: Physikalisches Wörterbuch
  15. a b Forscher graben Tycho Brahes Knochen erneut aus. Spiegel Online, 15. November 2010, abgerufen am 16. November 2010.
  16. Joshua und Anne-Lee Gilder: Der Fall Kepler. Mord im Namen der Wissenschaft. List-Verlag, Berlin 2005.
  17. Stellungnahme der Kepler-Gesellschaft zum Buch von Joshua Gilder und Anne-Lee Gilder. 4. März 2005, abgerufen am 16. November 2010 (PDF (160 kB)).
  18. 2006: Tycho Brahe – Denkmal am Wandsbeker Rathaus

Wikimedia Foundation.

Игры ⚽ Поможем написать реферат

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Tycho-Brahé — Tycho Brahe Pour les articles homonymes, voir Brahé. Tycho Brahe Portrait de Tycho Brahe Naissance …   Wikipédia en Français

  • Tycho Brahé — Tycho Brahe Pour les articles homonymes, voir Brahé. Tycho Brahe Portrait de Tycho Brahe Naissance …   Wikipédia en Français

  • Tycho Brahe — Nacimiento 14 de diciembre de 1546 Castillo de Knutstorp Fallecimiento …   Wikipedia Español

  • Tycho Brahe — (1546 1601), et af de store navne i dansk videnskabs historie, grundlagde den moderne observerende astronomi. Allerede i oldtiden havde astronomerne observeret, men Tychos indsats var at han indså at fremskridt i astronomien forudsatte… …   Danske encyklopædi

  • Tycho Brahe — (14 de diciembre de 1546 en Knutstorp, Escania, en aquel entonces parte de Dinamarca 24 de octubre de 1601 en Praga, en aquel entonces capital de Bohemia) fue un astrónomo danés. Hizo que se construyera Uraniborg; que se convertiría en el primer… …   Enciclopedia Universal

  • Tycho Brahe — Tycho Brahe, s. Brahe 1), S. 304 …   Meyers Großes Konversations-Lexikon

  • Tycho Brahe — Tycho Brahe, s. Brahe …   Kleines Konversations-Lexikon

  • Tycho Brahe — V. Brahe …   Encyclopédie Universelle

  • Tycho Brahe — This article is about the astronomer Tycho Brahe. For other uses, see Tycho Brahe (disambiguation). Tycho Ottesen Brahe Born 14 December 1546 Knutstorp Castle, Scania Died 24 October 1601 (age …   Wikipedia

  • Tycho Brahe — Pour les articles homonymes, voir Brahé. Tycho Brahe Naissance 14 décembre 1546 Knutstorp …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”