Alte DNA

Alte DNA


Quervernetzte aDNA aus einer 4000 Jahre alten Niere eines ägyptischen Priesters mit Namen Nekht-Ankh (vergrößert)
Mittels aDNA rekonstruierte Verwandtschaftsbeziehungen in der Lichtensteinhöhle

aDNA stammt aus dem englischen „ancient DNA“ (alte DNA) und ist die technische Bezeichnung für Reste von Erbgutmolekülen in toten Organismen.

Laut Konvention handelt es sich um aDNA, wenn die Probe von einem toten Organismus stammt und keine direkten Verwandten des beprobten Organismus mehr leben. Z. B. wird menschliche DNA dann als aDNA angesprochen, wenn das Individuum mindestens 75 Jahre vor der Probenuntersuchung verstorben ist.

Außerdem wird auch derjenige Forschungszweig der Molekularbiologie mit „aDNA“ bezeichnet, der die alten Erbmoleküle – eben die aDNA – erforscht.

Die aDNA-Forschung ist in Zielen und Methoden eng mit der genetischen Rechtsmedizin und der forensischen Anthropologie (s. Anthropologie) verwandt.

Inhaltsverzeichnis

Geschichte

Die Geschichte der aDNA ist eng mit der Entwicklung der Polymerase-Kettenreaktion (engl. Polymerase Chain Reaction, PCR), einer speziellen molekularbiologischen Technik verwoben, die es ermöglicht, auch geringe Mengen Erbgut zu vervielfältigen und zu untersuchen. In der Anfangszeit der aDNA kam es zu einer Reihe von Berichten über aDNA, die sich später als falsch herausstellten und Material verwendeten, das aus heutiger Sicht keine Aussicht auf Erhaltung von amplifizierbarer DNA hat. Die Anwendung von aDNA hat daher auch heute noch ein Image-Problem, was sich jedoch zunehmend bessert.

Anwendungsgebiete

Der Erkenntnisgewinn anhand von aDNA ist für die genetische Biologie, die Paläozoologie, die Paläobotanik sowie die Anthropologie (besonders Paläoanthropologie) und mit letzterer im Schulterschluss auch für die Archäologie von Bedeutung. Aus letzterer entwickelte sich ein eigener Wissenschaftszweig, die Paläogenetik.

Artbestimmung

Jede biologische Art ist durch ein spezifisches genetisches Merkmalsmuster gekennzeichnet, deswegen ermöglicht die Untersuchung des Erbgutes schon einer einzigen Zelle die eindeutige artspezifische Zuweisung. aDNA nutzt man zur Artbestimmung, wenn die Erhaltungsbedingungen keine anderen eindeutigen Identifikationsmöglichkeiten mehr zulassen oder die Trennschärfe anderer Methoden zu ungenau ist. So lassen sich z. B. Schafe und Ziegen aufgrund hoher Ähnlichkeit im Knochenbau allein anhand der Skelettmerkmale nicht auseinanderhalten.

Phylogenese

Die Evolution der Arten und ihre verwandtschaftlichen Beziehungen untereinander lassen sich statistisch anhand ihrer verschiedenen genetischen Merkmalsmuster darstellen; als Maßzahl dient hier der genetische Abstand. Zur Einordnung bereits ausgestorbener Arten behilft sich die phylogenetische Forschung der aDNA.

Individuelle Verwandtschaftsanalyse

Zwei Individuen sind im biologischen Sinne miteinander verwandt, wenn sie mindestens einen gemeinsamen Vorfahren aufweisen. Der Grad der biologischen Verwandtschaft zweier Individuen lässt sich ebenfalls anhand ihres Erbgutes ablesen. Verfahren ähnlich dem genetischen Vaterschaftstest finden auch in der aDNA-Analyse Anwendung. Einschränkend wirkt sich hier allerdings die sehr bruchstückhafte Erhaltung der DNA-Moleküle aus, die die Untersuchung jeweils nur kleiner Abschnitte ermöglicht. Besonderes Augenmerk gilt hier den Bereichen hoher Variabilität, d. h. Stellen, an denen häufig Mutationen auftreten. Im speziellen sind das STRs (Short Tandem Repeats) und in zunehmenden Maße auch SNPs (Single Nucleotide Polymorphisms).

Vielversprechend ist hier v.a. die Auswertung mitochondrialer DNA, da diese im Vergleich zur DNA des Zellkerns in wesentlich größerer Kopienzahl vorliegt (etwa 1000 mitochondriale Kopien, aber nur 2 nukleare pro Zelle) und so Erhaltungsprobleme gelindert werden. Allerdings werden Mitochondrien nur von der Mutter, nicht aber vom Vater an die Kinder weitergegeben, d. h. es lässt sich nur die – im biologischen Sinne – matrilineare Abstammungslinie verfolgen.

Geschlechtsdiagnostik

Das genetische Geschlecht eines Individuums ist bei günstigen Erhaltungsbedingungen, d. h. bei der Überlieferung chromosomaler DNA, bestimmbar. Bei Arten, die wie der Mensch nur ein geschlechtsspezifisches Chromosom (Y-Chromosom) besitzen, sind sichere Differenzierungsmöglichkeiten jedoch eingeschränkt. Mit dem Nachweis von aDNA-Bruchstücken, die vom Y-Chromosom stammen (z. B. aus der SRY-Region) ist das genetische Geschlecht eindeutig als männlich belegt, dagegen kann aus dem Fehlen Y-spezifischer Merkmale nicht sicher auf weibliches Geschlecht geschlossen werden, denn unwägbare Erhaltungsbedingungen könnten ebenso der Grund hierfür sein.

Trotz dieser Unsicherheit wird die molekulare Geschlechtsdiagnostik v.a. bei menschlichen Skelettresten angewendet. Insbesondere bei Individuen, an denen aufgrund des jungen Sterbealters oder unspezifischer Skelettmerkmale nur eine unsichere Einordnung mittels biologisch-anthropologischer Methoden möglich ist, hilft die aDNA weiter.

Identifizierung von Individuen und Gegenständen

Als Ausnahmen, die allerdings meist unter großer Anteilnahme der Öffentlichkeit stattfinden, können die Identifizierungen historisch bedeutender Personen mit sterblichen Überresten gelten. Der Wissenschaftler extrahiert dazu zunächst aDNA aus Gewebeproben des fraglichen Individuums (Knochen, Haare, Kleidung), vor allem um daraus die mt-Haplogruppe bzw. bei männlichen Individuen auch den Y-Haplotypen zu bestimmen. Anschließend vergleicht er diesen mit „authentischer“ DNA, die bestenfalls von noch lebenden mutmaßlichen Verwandten stammt. In manchen Fällen hilft auch die Rekonstruktion des genetischen Fingerabdrucks der Person, um diesen mit dem von eng verwandten Personen aus gesicherten Bestattungen zu vergleichen. Eine Extraktion aus persönlichen Gegenständen des fraglichen Individuums ist ebenfalls möglich, allerdings können hier aus Zweifeln an der Authentizität Probleme in der Beweisführung folgen. Bei signifikanter Übereinstimmung zwischen fraglichen und authentischen Proben gilt das Individuum als identifiziert.

Paläopathologie

Die wenigsten Krankheiten lassen sich eindeutig an Skeletten diagnostizieren, deswegen versucht die aDNA-Forschung seit ca. Mitte der 1990er Jahre Erreger von Infektionskrankheiten in menschlichen Überresten nachzuweisen. Im Mittelpunkt stehen dabei zunächst neben der Methodenentwicklung u. a. der Nachweis eventuell ausgestorbener infektiöser Bakterienstämme und die Gegenüberstellung geschichtlich überlieferter Krankheitsverläufe und -symptome mit den heutigen Erkenntnissen über die jeweilige Krankheit. Mit wachsender Datenzahl kann dieser Zweig in der Zukunft außerdem einen wichtigen Beitrag zur historischen Epidemiologie liefern.

Überlieferungsbedingungen und Probleme

In trockener und kühler Umgebung kann DNA lange Zeit überdauern, allerdings lösen sich die empfindlichen Makromoleküle in kleine Kettenbruchstücke auf. Wärme, Feuchtigkeit, saure und basische pH-Werte begünstigen diesen Zerfallsprozess in immer kleinere Stückchen. Als Faustregel gilt, dass aDNA hauptsächlich Nukleotid-Ketten enthält, die kürzer als 200 Basenpaare sind – das ist im Vergleich zur theoretischen Gesamtlänge des z. B. menschlichen Genoms von 3x109 Basenpaaren, sehr gering (Hummel 2003). Für gegebene Umweltparameter lassen sich „Halbwertszeiten“ berechnen, mit denen die zu erwartende Qualität der Ergebnisse abgeschätzt werden kann (z. B. Marota et al 2002).

Da aDNA meist in sehr geringen Mengen überliefert ist, bedient sich die Forschung der PCR, um die erhaltenen Stücken zunächst zu vervielfältigen. Aufgrund der ausgesprochen hohen Sensibilität der PCR sind Fehlamplifikationen sehr häufig, d. h. es werden anstatt der originären alten Ziel-DNA entweder das Erbgut anderer Organismen (häufig von Boden-Bakterien) oder moderne DNA des Ziel-Organismus vervielfältigt, die durch ungenügende Aufbereitung des Materials oder unsauberes Arbeiten in die Probe gelangt ist.

Ein weiteres, bisher kaum erforschtes Problem liegt in den so genannten „Hot Spots“, denn diese DNA-Stellen können nach dem Ableben des Organismus durch chemische Reaktionen derart verändert werden. So entstehen Pseudo-Mutationen, die es zu erkennen gilt.

Von geringerer Bedeutung sind sogenannte Inhibitoren, die aus dem Liegenmilieu der DNA, z. B. dem Boden, stammen und die PCR durch Blockieren des Enzyms verhindern können. Häufig wird Bovines Serumalbumin (s. Albumin), ein aus Rinderblut gewonnenes Eiweiß, zur Bindung von Eisen, dem häufigsten Inhibitor, dem Reaktionsgemisch zugefügt. Liegen dennoch Hinweise vor, dass PCR-Inhibition die Ursache für falsch negative Ergebnisse ist, hilft es die aDNA-Probe verdünnt einzusetzen. Leider verringert sich durch die Verdünnung auch die DNA-Konzentration in der Probe, was die Chancen auf PCR-Erfolg wieder verringert.

Schließlich sagt die sichtbare Erhaltung eines Organismus wenig über den Zustand der enthaltenen aDNA aus. So ist z. B. aus Moorleichen aufgrund des sauren Liegemilieus selten verwertbare DNA zu extrahieren. Auch Trockenmumien mit hervorragender Weichteilerhaltung enthalten oftmals nur noch sehr geringe aDNA Spuren.

Verfahren

Die Methodik ist auf die Gewinnung möglichst reiner, vieler und großer Oligonukleotid-Ketten ausgerichtet. Je nach Überlieferungsbedingungen stehen verschiedene Gewebe zu Verfügung, jedoch sind aufgrund der Abgeschlossenheit Hartgewebe (Knochen, Dentin) vorzuziehen, in denen die DNA von z. B. Osteoklasten am besten vor Umwelteinflüssen geschützt erhalten bleibt.

Nach der Gewinnung und Reinigung der DNA-Reste aus dem Gewebe werden aus diesen zuerst die zu untersuchenden Sequenzen in einer PCR bis zur Nachweisgrenze vervielfältigt. Die PCR-Amplifikate können dann durch Fragmentgrößenbestimmung oder Sequenzierung untersucht werden. Bei der Sequenzierung wird, um Kontaminations-Mischspuren bzw. bestimmte PCR-Artefakte aufzudecken, häufig das PCR Amplifikat kloniert und selektiert.

Berühmte und wichtige Beispiele

Die vorgestellte Auswahl soll einen Überblick über die Spannweite der aDNA-Forschung geben. Da auch negative Ergebnisse von wissenschaftlicher Bedeutung sind, werden „berühmte und wichtige Misserfolge“ im Folgenden ebenfalls angeführt.
Allein über die Erforschung moderner DNA – also aus noch lebenden Organismen gewonnenes Erbgut – können Rückschlüsse auf vergangene Zusammenhänge und Entwicklungen möglich sind. Beispiele sind die mitochondriale Eva und das 3000 Jahre alte Verwandtschaftssystem der menschlichen Überresten in der Lichtensteinhöhle.

Prokaryoten

Eine wichtige Frage in der Paläopathologie, dem Streit um die Herkunft der Syphilis-Erreger, wurde unter anderem mittels aDNA-Analysen zu beantworten versucht. Die gezielte Suche nach allen bekannten Treponema-Erregern in einer 46 Skelette umfassenden Studie blieb jedoch erfolglos. Die Entdeckung von alten Tuberkulose-Bakterien in einigen Individuen derselben Serie bestätigte dagegen die allgemeine Nachweismöglichkeit von Erregern bestimmter Krankheiten (Bouwman & Brown 2004).

Pflanzen

Tiere

Ancient DNA wurde in einer Vielzahl von Arbeiten zur Klärung von Verwandtschaftsverhältnissen bei Tieren verwendet, im Folgenden findet sich eine Auswahl der bearbeiteten Taxa.

Film und Roman des Titels „Jurassic Park“ haben Anfang der 1990er stark zur öffentlichen und sogar wissenschaftlichen Euphorie in Sachen aDNA beigetragen. In der Geschichte wird aus Fossilien in Bernstein (sog. Inklusen) altes Erbgut gewonnen, das zur Neuzüchtung bereits ausgestorbener Arten verwendet wird. Diese aufgrund dessen wohl bekannteste Methode der aDNA-Gewinnung ist allerdings nicht möglich – die Fossilien scheinen schlichtweg zu alt, um intakte Nucleotidketten, egal ob tierischen oder pflanzlichen Ursprung, zu enthalten. Bis heute ist kein reproduzierbarer positiver Nachweis von aDNA aus Bernstein gelungen.

Menschen

aDNA-Forschung ist aufgrund ihres jungen Alters und der ungewohnt tiefen Einblicke, die sie in vergangene Zeiten zu liefern vermag, sehr medienwirksam. V.a. Ergebnisse, die an menschlichen Überresten gewonnen wurden, tauchen hin und wieder als „Sensationsmeldungen“ in Presse und Rundfunk auf, z. T. auch in einer Form, die die Grenzen der Pietät überschreitet. Einige Wissenschaftler unterstützen gezielt diese Richtung der Berichterstattung, indem sie sich aus wissenschaftlicher Sicht wenig aufschlussreichen, dafür aber öffentlichkeitswirksamen Themen widmen. Als Beispiel sei hier die Erforschung von Krankheiten historisch bekannter Personen genannt.

Man beachte deshalb bei der Betrachtung des folgenden: Trotz aller menschlicher Neugier an sich selbst und seinen Artgenossen darf die Würde des untersuchten Individuums nie vergessen oder gar verletzt werden.

  • Pääbo und die Mumie
Der bekannte Evolutionsgenetiker Svante Pääbo publizierte 1985 als erster die Entdeckung alter DNA in Proben einer ägyptischen Mumie. Die Sensation war so groß, dass er sie sogar u. a. in Nature, einer der beiden weltweit wichtigsten naturwissenschaftlichen Zeitschriften, veröffentlichte. Später stellte sich jedoch heraus, dass Pääbo keine alte, sondern nur seine eigene, unbeabsichtigt in die Proben gelangte, DNA repliziert und nachgewiesen hatte.
Aufgrund hervorragender Weichteilerhaltung sind die ägyptischen Mumien häufiger Gegenstand von aDNA-Untersuchung, denn man erhofft sich auch auf molekularer Ebene gute Überlieferungsbedingungen. Dagegen sprechen allerdings die hohen, den DNA-Zerfall fördernden, Temperaturen.
[zu vervollständigen!] Erster Artikel: Krings et al. 1997
Der Freitod Bormanns im Frühjahr 1945 ist mehrfach angezweifelt worden. 1972 wurden am Lehrter Bahnhof in Berlin zwei Skelette entdeckt, von denen eines laut gerichtsmedizinischem Gutachten (Gebissmerkmale) als Bormann identifiziert werden konnte. Erneute Zweifel führten schließlich zu einer DNA-Analyse Ende der 1990er – obwohl es sich der Definition nach noch nicht eine um aDNA-Untersuchung handelte (<75 Jahre), konnten nur noch verhältnismäßig geringe Reste DNA nachgewiesen werden. Die Übereinstimmung mitochondrialer Muster zwischen dem beprobten Skelett und einer noch lebenden Cousine Bormanns macht eine verwandtschaftliche Beziehung in mütterlicher Linie und damit die Identifizierung Bormanns wahrscheinlich (Anslinger et al. 2001).
Der Schwedenkönig fiel 1632 während der Schlacht bei Lützen. Seine Leiche wurde einbalsamiert nach Stockholm überführt und dort beigesetzt. Teile seiner Kleidung verblieben jedoch in Lützen und werden dort heute im Museum ausgestellt. Die Untersuchung von Blutresten im Stoff erbrachte ausreichende Mengen alter DNA, um diese mit dem Erbgut seiner Nachfahren im heutigen schwedischen Herrscherhaus vergleichen zu können. Die Echtheit wurde bestätigt (Ellegren 1994).

Siehe auch

Literatur

Zur Einführung

  • M. Jones: The Molecule Hunt. How Archaeologists are Bringing the Past Back to Life. Penguin Books 2001–2, ISBN 1-55970-679-1. – Guter Abriss der Forschungsgeschichte und nebenbei allgemein verständliche Erklärung der Methoden; zuweilen etwas zu ungenau. Der Autor ist einer der Vorreiter auf dem Gebiet der aDNA.
  • S. Hummel: Ancient DNA Typing. Methods, Strategies and Applications. Springer, 2003, ISBN 3-540-43037-7.

Fachartikel

  • K. Anslinger, G. Weichhold, W. Keil, B. Bayer, W. Eisenmenger: Identification of the skeletal remains of Martin Bormann by mtDNA analysis. In: International Journal of Legal Medicine. 114/2001. S. 194–196.
  • JJ Austin, AJ Ross, AB Smith, RA Fortey, RH Thomas: Problems of reproducibility – does geologically ancient DNA survive in amber-preserved insects?. In: Proceedings of the Royal Society London. 264/1997. S. 467–474.
  • AS Bouwman, TA Brown: The limits of biomolecular palaeopathology: ancient DNA cannot be used to study venereal syphilis. In: Journal of Archaeological Science. 32/2005. S. 703–713.
  • H. Ellegren: Gamla gener guldgruva för historiker. In: Forskning & Framsteg. 6/1994. S. 21–26
  • M. Krings, A. Stone, RW Schmitz, H. Krainitzki, M. Stoneking, S. Pääbo: Neandertal DNA Sequences and the Origin of Modern Humans. In: Cell. 90/1997. S. 19–30. (Zusammenfassung)
  • I. Marota, C. Basile, M. Ubaldi, F. Rollo: DNA decay rate in papyri and human remains from Egyptian archaeological sites. In: American Journal of Physical Anthropology. 117/2002. S. 310–318.

Wikimedia Foundation.

Игры ⚽ Нужно сделать НИР?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • alte DNA — alte DNA,   aDNA, Mengen oder Spuren von DNA (Desoxyribonukleinsäure) eines toten Organismus oder aus dessen Teilen oder Absonderungen lebender Organismen. Da aDNA keinen körpereigenen Reparaturmechanismen mehr unterliegt, wird sie zu kleinen… …   Universal-Lexikon

  • DNA-Methylierung — Übergeordnet epigenetische Regulation der Genexpression Methylierung von Makromolekülen DNA Modifikation …   Deutsch Wikipedia

  • DNA-Doppelhelix — Animiertes Strukturmodell einer DNA Helix in B Konformation. Die Stickstoff (blau) enthaltenden Nukleinbasen liegen waagrecht zwischen zwei Rückgratsträngen, welche sehr reich an Sauerstoff (rot) …   Deutsch Wikipedia

  • DNA-Transposon — Als DNA Transposon, oft eigentlich unexakterweise einfach nur Transposon genannt, werden DNA Sequenzen im Genom bezeichnet, die im Gegensatz zum Retrotransposon ohne eine RNA Zwischenstufe ihren Locus verändern können. DNA Transposons sind… …   Deutsch Wikipedia

  • Ancient DNA — Quervernetzte aDNA aus einer 4000 Jahre alten Niere eines ägyptischen Priesters mit Namen Nekht Ankh (vergrößert) Mittels aDNA …   Deutsch Wikipedia

  • Paläo-DNA-Analyse — Quervernetzte aDNA aus einer 4000 Jahre alten Niere eines ägyptischen Priesters mit Namen Nekht Ankh (vergrößert) Mittels aDNA …   Deutsch Wikipedia

  • B-DNA — Animiertes Strukturmodell einer DNA Helix in B Konformation. Die Stickstoff (blau) enthaltenden Nukleinbasen liegen waagrecht zwischen zwei Rückgratsträngen, welche sehr reich an Sauerstoff (rot) …   Deutsch Wikipedia

  • Gentechnik: DNA-Synthese und PCR —   Chemische DNA Synthese   DNA ist als Erbsubstanz ohne Zweifel ein ganz besonderer Stoff. In eine Zelle eingebracht, ist eine DNA in der Lage, für ihre eigene Verdopplung zu sorgen, wobei die zelleigenen Strukturen und Enzyme veranlasst werden,… …   Universal-Lexikon

  • Bundestag (Alte Bundesrepublik) — Deutscher Bundestag Gedenkveranstaltung im Bundestag (23.05.2003) Sitzverteilung[1] siehe auch: Liste der Bundestagsmitglieder Fraktion Sitze Anteil …   Deutsch Wikipedia

  • DNA2 — DNA² (jap. D・N・A² ~何処かで失くしたあいつのアイツ~ dī enu ē tsū – dokokade nakushita aitsu no aitsu) ist eine Manga Serie des japanischen Zeichners Masakazu Katsura, die auch als Anime umgesetzt wurde. Sie ist dem Genre „Comedy/Romance“ zuzuordnen.… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”