Jupiter I

Jupiter I
I Io
Jupitermond Io, aufgenommen aus einer Entfernung von 130.000 km von der Raumsonde Galileo am 3. Juli 1999.
Jupitermond Io, aufgenommen aus einer Entfernung von 130.000 km von der Raumsonde Galileo am 3. Juli 1999.
Zentralkörper Jupiter
Eigenschaften des Orbits
Große Halbachse 421.800 km
Periapsis 420.100 km
Apoapsis 423.500 km
Exzentrizität 0,0041[1]
Bahnneigung 0,04°
Umlaufzeit 1,769 Tage
Mittlere Orbitalgeschwindigkeit 17,3 km/s
Physikalische Eigenschaften
Albedo 0,61
Scheinbare Helligkeit 5,0 mag
Mittlerer Durchmesser 3643,2 km
Masse 8,94 × 1022 kg
Mittlere Dichte 3,56 g/cm³
Siderische Rotation 1,769 Tage
Achsneigung
Fallbeschleunigung an der Oberfläche 1,81 m/s²
Fluchtgeschwindigkeit 2560 m/s
Oberflächentemperatur  ? - 130 - 200 K
Entdeckung
Entdecker Galileo Galilei
Datum der Entdeckung 7. Januar 1610
Anmerkungen Einfach gebundene Rotation
Io hat eine teilweise vom Vulkanismus stammende Atmosphäre mit <10-6Pa
Größenvergleich zwischen Io (unten links), Erdmond (oben links) und Erde (maßstabsgerechte Fotomontage).

Io [iʔo] (auch Jupiter I) ist der innerste der vier großen Monde des Planeten Jupiter und mit einem Durchmesser von 3643 km der drittgrößte Mond Jupiters und der viertgrößte Mond des Sonnensystems.

Ihre Besonderheit ist ein extremer Vulkanismus, der von keinem anderen Himmelskörper im Sonnensystem überboten wird. Bekannt wurde dieser Mond durch die erste Messung der Lichtgeschwindigkeit durch Ole Rømer im Jahr 1676 anhand beobachteter Verfinsterungszeiten von Io in Abhängigkeit von der Stellung des Jupiters zur Erde.

Inhaltsverzeichnis

Entdeckung

Ios Entdeckung wird dem italienischen Gelehrten Galileo Galilei zugesprochen, der im Jahre 1610 sein einfaches Fernrohr auf den Jupiter richtete. Die vier großen Monde Io, Europa, Ganymed und Kallisto werden daher auch als Galileische Monde bezeichnet.

Benannt wurde der Mond nach Io, in der griechischen Mythologie eine Geliebte des Zeus (entspricht dem römischen Jupiter). Obwohl der Name Io bereits kurz nach der Entdeckung von Simon Marius vorgeschlagen wurde, konnte er sich über lange Zeit nicht durchsetzen. Erst in der Mitte des 20. Jahrhunderts kam er wieder in Gebrauch. Vorher wurden die Galileischen Monde üblicherweise mit römischen Ziffern bezeichnet und Io war der Jupitermond I.

Die Galileischen Monde sind so hell, dass man sie bereits mit einem Fernglas oder einem kleinen Teleskop beobachten kann.

Umlaufbahn und Rotation

Io umkreist Jupiter in einem mittleren Abstand von 421.600 Kilometern in 1 Tag 18 Stunden und 27,6 Minuten. Die Bahn weist eine numerische Exzentrizität von 0,004 auf und ist um 0,04 Grad gegenüber der Äquatorebene des Jupiter geneigt.

Io rotiert in 1 Tag 18 Stunden und 27,6 Minuten um die eigene Achse und weist damit, wie der Erdmond und die übrigen Galileischen Jupitermonde, eine gebundene Rotation auf.

Physikalische Eigenschaften

Innerer Aufbau: metallischer Kern aus Eisen oder Nickel; der Mantel aus Gestein oder Silicatschicht erstreckt sich bis an die Oberfläche.

Io besitzt einen mittleren Durchmesser von 3643,2 Kilometern und hat eine relativ hohe Dichte von 3,56 g/cm3. Sie weist damit eine etwas höhere Dichte und einen etwas größeren Durchmesser als der Erdmond auf.

Im Gegensatz zu den anderen Galileischen Monden findet sich auf Io so gut wie kein Wasser. Dies könnte darauf zurückzuführen sein, dass Jupiter in der Frühzeit seiner Entstehung hohe Temperaturen aufwies, die Wasser und andere flüchtige Stoffe auf dem innersten Mond entweichen ließen.

Ihre Albedo beträgt 0,61, das heißt, 61 Prozent des einfallenden Sonnenlichts werden von der Oberfläche reflektiert. Die Oberflächentemperatur beträgt im Durchschnitt –143 Grad Celsius.

Vor den Missionen der unbemannten Raumsonden war die Wissenschaft davon überzeugt, dass die Galileischen Monde von Kratern übersäte Körper ähnlich dem Erdmond seien. Anhand der Anzahl und Verteilung der Krater sollten Rückschlüsse auf das Alter der Monde gezogen werden. Als die Sonden Voyager 1 und Voyager 2 erstmals detaillierte Aufnahmen zur Erde sandten, war man überrascht, dass die Monde ein gänzlich anderes Aussehen zeigten. Der Grund hierfür ist bei Io der bis dahin unerwartete Vulkanismus.

Oberfläche

Tupan-Patera, ein vulkanischer Schlot von 75 km Durchmesser, gefüllt mit flüssigem Schwefel.

Ios Oberfläche hat ein Alter von nur wenigen Millionen Jahren und ist permanenten Veränderungen unterworfen. Sie ist im Wesentlichen sehr eben mit Höhenunterschieden von weniger als einem Kilometer, aber es gibt auch Berge von bis zu neun Kilometern Höhe, die nicht vulkanischen Ursprungs sind und vermutlich durch tektonische Prozesse entstehen. Vergleiche der Bilder der Voyager-Sonden und der 20 Jahre jüngeren Bilder der Galileo-Sonde deuten auch auf schnelle Verfallsprozesse hin, die bereits in diesem kurzen Zeitraum sichtbar sind.

Die markantesten Strukturen der Oberfläche sind jedoch hunderte vulkanischer Calderen, die im Durchmesser bis zu 400 Kilometer groß und teilweise mehrere Kilometer tief sind. Daneben gibt es auch zahlreiche Seen aus geschmolzenem Schwefel. Die Ablagerungen von Schwefel und seinen Verbindungen weisen ein breites Spektrum an Farbtönen auf, die dem Mond ein ungewöhnlich buntes Erscheinungsbild verleihen.

Weiterhin erstrecken sich Lavaflüsse einer niedrigviskosen Flüssigkeit über mehrere hundert Kilometer hinweg. Auswertungen der Voyagerdaten ließen vermuten, dass die Lavaflüsse überwiegend aus Schwefel- und Schwefelverbindungen zusammengesetzt sind. Dagegen zeigen erdgestützte Infrarotuntersuchungen so genannte Hot Spots mit Temperaturen bis zu 2000 K. Dies ist viel zu heiß für geschmolzenen Schwefel. Möglicherweise bestehen die Lavaflüsse aus geschmolzenen Silikaten. Aktuelle Beobachtungen des Hubble-Weltraumteleskops weisen darauf hin, dass das Material reich an Natrium ist.

Vulkanismus

Voyager 1 überfliegt einen Vulkan.
Auf diesen Aufnahmen der Sonde Galileo sind zwei große vulkanische Eruptionen erkennbar. Die links am Horizont sichtbare hat eine Höhe von 140 km, die andere (vergrößert auf dem unteren Bildausschnitt) von 75 km.
Die 330 km hohe Eruptionswolke des Vulkans Tvashtar, aufgenommen von New Horizons am 28. Februar 2007.
Kinematisches Schema der Bahnresonanzen von Io mit Europa und Ganymed. Blickrichtung von Süden.

Ios Oberfläche weist so gut wie keine Impaktkrater auf, vielmehr ist sie von aktivem Vulkanismus geprägt und ständigen Veränderungen unterworfen. Io ist mit Abstand der vulkanisch aktivste Körper im ganzen Sonnensystem.

Bei Eruptionen werden flüssiger Schwefel und Schwefeldioxid mit Geschwindigkeiten bis zu 1 km/s und Temperaturen von 1000 bis 1300 °C ausgestoßen[2], die aufgrund der geringen Schwerkraft bis in 300 Kilometer Höhe gelangen können. Die Materialien fallen zurück auf die Oberfläche und bilden mächtige Ablagerungen.

Der Vulkanismus wurde erstmals 1979 auf fotografischen Aufnahmen der Raumsonde Voyager 1 nachgewiesen, die seinerzeit großes Aufsehen erregten, da dies die erste Entdeckung von aktivem Vulkanismus auf einem anderen Himmelskörper als der Erde war. Die Eruptionen variieren sehr stark. Bereits über einen Zeitraum von nur vier Monaten, die zwischen der Ankunft von Voyager 1 und Voyager 2 vergangen waren, konnte festgestellt werden, dass Eruptionen in bestimmten Bereichen zum Erliegen gekommen waren, während an anderen Stellen neue begonnen hatten. Die Ablagerungen rund um die vulkanischen Krater hatten sich ebenfalls deutlich verändert.

Durch den Vergleich mit den 20 Jahre später aufgenommenen Bildern der Galileo-Sonde ist erkennbar, dass die permanenten Vulkanausbrüche die Oberfläche von Io durch Ablagerungen von ausgeworfenem Material ständig verändern. Io weist die planetologisch jüngste Oberfläche im Sonnensystem auf. Ihr Alter wird auf etwa 10 Millionen Jahre geschätzt. Daher sind auch kaum Einschlagskrater zu erkennen, da diese durch die planetologischen Prozesse eingeebnet werden.

Die vulkanische Aktivität wird durch Gezeitenkräfte verursacht, die den Mond regelrecht durchkneten und dadurch aufheizen. Allein die Gezeitenkräfte des Jupiter auf Io sind mehr als 6000-mal stärker als die des Erdmondes. Die zusätzlichen Gezeitenkräfte von Europa und Ganymed liegen noch immer in der Größenordnung der des Mondes auf die Erde. Durch die gebundene Rotation von Io ist jedoch nicht die absolute Stärke der Gezeitenkräfte des Jupiter entscheidend, sondern nur ihre Änderung. Io wird durch einen Resonanzeffekt mit den Monden Europa und Ganymed, deren Umlaufzeiten im Verhältnis 1:2:4 zueinander stehen, auf eine leicht elliptische Bahn um Jupiter gezwungen, sodass die Variation der Gezeitenkräfte des Jupiters allein durch die Variation des Abstandes noch 1000-mal so groß ist wie der Einfluss der Gezeitenwirkung des Mondes auf die Erde. Durch die elliptische Umlaufbahn schwankt Jupiter aus der Sicht eines Beobachters auf Io während eines Umlaufs am Himmel zusätzlich leicht hin und her. Aufgrund des geringen Abstandes zu Jupiter führt diese Libration in Länge des Satelliten zu periodisch wandernden Gezeitenbergen von bis zu etwa 300 Metern Höhe. Die entsprechenden Deformationen der Erdkruste betragen lediglich 20 bis 30 Zentimeter. Wenn die Umlaufbahn von Io kreisförmig wäre, dann wären ihre Gezeitenberge unbewegt und es gäbe auf ihr keinen Vulkanismus.

Bedeutende Vulkanberge sind der Culann Patera, der Tupan Patera, der Ra Patera und der Loki Patera.

Innerer Aufbau

Anders als die Eismonde des äußeren Sonnensystems, scheint Io daher eher wie die terrestrischen (erdähnlichen) Planeten überwiegend aus silikatischem Gestein aufgebaut zu sein. Daten der Raumsonde Galileo lassen darauf schließen, dass Io einen Kern aus Eisen, eventuell mit Anteilen an Eisensulfiden, von mindestens 900 Kilometern Durchmesser besitzt.

Atmosphäre

Io besitzt eine äußerst dünne Atmosphäre von 120 Kilometern Höhe, die sich aus Schwefeldioxid und möglicherweise Spuren anderer Gase zusammensetzt. Die 700 Kilometer hoch reichende Ionosphäre besteht aus Schwefel-, Sauerstoff- und Natriumionen. Sie wird durch die vulkanische Aktivität ständig erneuert, so dass der Teilchenverlust durch die Wechselwirkung mit der Magnetosphäre des Jupiter ausgeglichen wird.

Magnetfeld und Strahlung

Io bewegt sich auf ihrer Bahn durch das starke Magnetfeld des Jupiters, wodurch elektrische Ströme induziert werden. Dabei werden rund 1000 Gigawatt mit einem Spannungspotential von 400.000 Volt erzeugt. Unter diesen Bedingungen werden Atome in der oberen Atmosphäre ionisiert und in den Weltraum geschleudert. Io erleidet durch diesen Partikelstrom einen Masseverlust von mehreren Tonnen pro Sekunde.

Die Ionen bilden längs Ios Bahn einen Torus um Jupiter, der im infraroten Licht intensiv leuchtet. Partikel, die durch den Sonnenwind aus dem Torus fortgerissen werden, könnten mitverantwortlich für Jupiters ungewöhnlich ausgedehnte Magnetosphäre sein. Diese Ionen werden in der Jupitermagnetosphäre derart stark beschleunigt, dass sie eine so starke Strahlung bilden, dass selbst die strahlungssicherste Elektronik einer Raumsonde nach kurzer Zeit in Ios Nähe versagen würde.

Außerdem bildet sich nach demselben Mechanismus, durch den auch Polarlichter entstehen, unterhalb von Io in der Jupiteratmosphäre eine Leuchterscheinung, die eine Leuchtspur nach sich zieht. Warum dem Leuchtpunkt weitere, schwächere Leuchtpunkte voraneilen, ist bisher physikalisch nicht erklärt.[3]

Die Position von Io beeinflusst sehr stark die Emission von Radiowellen, die vom Jupitersystem abgestrahlt werden. Wenn Io von der Erde aus sichtbar ist, steigt die Intensität der Radiostrahlung deutlich an. Spekulationen über ein eigenes Dipolfeld Ios, wie es der Jupitermond Ganymed besitzt, wurden durch die Raumsonde Galileo widerlegt.[4]

Erkundung durch Sondenmissionen

Die Erkundung von Io durch Raumsonden begann in den Jahren 1973 und 1974 mit den Jupiter-Vorbeiflügen von Pioneer 10 und Pioneer 11. 1979 konnten Voyager 1 und Voyager 2 erstmals genauere Beobachtungen des Mondes vornehmen. Der Großteil unseres Wissen über Io stammt jedoch vom Galileo-Orbiter, welcher 1995 das Jupitersystem erreichte und während den darauf folgenden acht Jahren mehrere nahe Vorbeiflüge am Jupitermond vollführte.

Im Jahr 2011 soll die NASA-Sonde Juno starten die Jupiter und seine Magnetosphäre aus einer Polaren Bahn erforschen soll. Sie könnte auch Io fotografieren.

Für das Jahr 2020 haben NASA und ESA die gemeinsame Europa Jupiter System Mission/Laplace vorgeschlagen, welche mindestens zwei Orbiter vorsieht, die jeweils in einen Orbit um Europa und Ganymed eintreten sollen und das gesamte Jupitersystem, einschließlich Io, mit einem revolutionären Tiefgang erforschen sollen.

Einzelnachweise

  1. NASA: Solar System Dynamics
  2. L. Keszthelyi, et al.: New estimates for Io eruption temperatures: Implications for the interior. In: Icarus. 192, 2007, S. 491–502. doi:10.1016/j.icarus.2007.07.008
  3. Pressemitteilung der Universität zu Köln im Informationsdienst Wissenschaft
  4. K.K. Khurana et al. „Io's Magnetic Field“, EGS XXVII General Assembly, Nice, 21.-26. April 2002, abstract #5119

Literatur

  • Lexikon der Astronomie in 2 Bänden. Spektrum Akademischer Verlag, Heidelberg/Berlin/Oxford 1995. ISBN 3-86150-145-7
  • NASA-Atlas des Sonnensystems. Knaur, München 2002. ISBN 3-426-66454-2
  • Dirk H. Lorenzen: Raumsonde Galileo. Franckh-Kosmos, Stuttgart 1998. ISBN 3-440-07557-5
  • David McNab, James Younger: Die Planeten. C. Bertelsmann, München 1999. ISBN 3-570-00350-7
  • David Morrison: Planetenwelten. Spektrum Akademischer Verlag, Heidelberg, Berlin, Oxford, ISBN 3-8274-0527-0
  • Planeten und ihre Monde, Spektrum Akademischer Verlag Heidelberg/Berlin/Oxford 1988. ISBN 3-922508-46-4

Weblinks


Wikimedia Foundation.

Игры ⚽ Поможем решить контрольную работу

Schlagen Sie auch in anderen Wörterbüchern nach:

  • JUPITER — Jupiter, la plus grosse et la plus massive des planètes, constitue le centre d’un vaste système de satellites et d’anneaux étudié de près par plusieurs sondes spatiales: Pioneer 10 en décembre 1973, Pioneer 11 en décembre 1974, Voyager 1 en mars… …   Encyclopédie Universelle

  • Jupiter — steht für: Jupiter (Mythologie), die höchste Gottheit der römischen Religion Jupiter (Planet), den 5. Planeten unseres Sonnensystems, nach dem Gott benannt Jupiter (Rumänien), einen kleinen Badeort an der Schwarzmeerküste, Rumänien Jupiter… …   Deutsch Wikipedia

  • Júpiter-C — Un cohete sonda Júpiter C en la plataforma de lanzamiento Características Funcionalidad Cohete sonda Fabricante Army Ballistic Missile Agency …   Wikipedia Español

  • jupiter — JUPITER. s. m. L Une des sept Planetes, qui est entre Saturne & Mars. Jupiter est une planete bienfaisante. les influences de Jupiter. quand Jupiter est conjoint avec &c. les satellites de Jupiter …   Dictionnaire de l'Académie française

  • Jupiter — (Балчик,Болгария) Категория отеля: 3 звездочный отель Адрес: Primorska str. 1A, 9600 Балчик, Б …   Каталог отелей

  • Jupiter — Jupiter, 1) (Myth.), so v.w. Zeus; 2) der größte der Planeten, der erste unter den sonnenfernen (jenseits der Asteroiden), übertrifft alle übrigen zusammen um 1/3, die Erde allein 1414 Mal an kubischem Inhalt; sein mittlerer Durchmesser ist 19,… …   Pierer's Universal-Lexikon

  • Jupiter — Ju pi*ter, n. [L., fr. Jovis pater. See {Jove}.] [1913 Webster] 1. (Rom. Myth.) The supreme deity, king of gods and men, and reputed to be the son of Saturn and Rhea; Jove. He corresponds to the Greek Zeus. [1913 Webster] 2. (Astron.) One of the… …   The Collaborative International Dictionary of English

  • Jupiter — Jupiter, FL U.S. town in Florida Population (2000): 39328 Housing Units (2000): 20943 Land area (2000): 19.998551 sq. miles (51.796007 sq. km) Water area (2000): 1.125379 sq. miles (2.914719 sq. km) Total area (2000): 21.123930 sq. miles… …   StarDict's U.S. Gazetteer Places

  • Jupiter, FL — U.S. town in Florida Population (2000): 39328 Housing Units (2000): 20943 Land area (2000): 19.998551 sq. miles (51.796007 sq. km) Water area (2000): 1.125379 sq. miles (2.914719 sq. km) Total area (2000): 21.123930 sq. miles (54.710726 sq. km)… …   StarDict's U.S. Gazetteer Places

  • Jupiter — c.1200, supreme deity of the ancient Romans, from L. Iupeter, from PIE *dyeu peter god father (originally vocative, the name naturally occurring most frequently in invocations [Tucker]), from *deiw os god (see ZEUS (Cf. Zeus)) + peter father in… …   Etymology dictionary

  • jupiter — Jupiter, Roy de Crete, que aujourd huy nous disons Candie. Jupiter, est aussi l un des sept Planettes. Jupiter selon les Alchemistes, est le metail que nous appelons Cuivre …   Thresor de la langue françoyse

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”