Lichtmikroskopie

Lichtmikroskopie
Redundanz Die Artikel Mikroskop, Mikroskopie und Lichtmikroskop überschneiden sich thematisch. Hilf mit, die Artikel besser voneinander abzugrenzen oder zu vereinigen. Beteilige dich dazu an der Diskussion über diese Überschneidungen. Bitte entferne diesen Baustein erst nach vollständiger Abarbeitung der Redundanz. d65sag's mir 12:41, 15. Mär. 2009 (CET)
Dieser Artikel oder Abschnitt bedarf einer Überarbeitung. Näheres ist auf der Diskussionsseite angegeben. Hilf mit, ihn zu verbessern, und entferne anschließend diese Markierung.
Lichtmikroskop

Mikroskope sind Geräte, mit denen stark vergrößerte Bilder von kleinen (oft für das Auge nicht sichtbaren) Objekten erzeugt werden können. Beim Lichtmikroskop wird diese Vergrößerung durch die Ausnutzung optischer Effekte erzielt.

Neben der normalen Lichtmikroskopie gibt es eine Vielzahl von lichtmikroskopischen Spezialverfahren, wie Phasenkontrast-, Interferenzkontrast-, Fluoreszenz-, Polarisations- und Konfokalmikroskopie.

Inhaltsverzeichnis

Prinzip

Strahlengang im Mikroskop

Das grundlegende Ziel eines Lichtmikroskopes (griechisch: μικρόν (micron) = klein+ σκοπεῖν (skopein) = etwas ansehen) ist die Erhöhung der Vergrößerung bzw. der Auflösung von Details die mit dem bloßen Auge nicht wahrgenommen werden können. Der Grund hierfür sind physiologische Begrenzungen des menschlichen Sehapparates, welcher nur über einen begrenzten Brechkraft-Bereich verfügt und deshalb nicht in beliebig kleinen Abständen zum Objekt scharf abbilden kann. Weitere Beschränkung sind die unterschiedlichen Aberrationen, die das kleinste abbildbare Volumen begrenzen. Im Prinzip wird das Objekt vergrößert abgebildet (Bildvergrößerung) und dieses dann mit einer Lupe betrachtet, um dieses aus einer größeren "Nähe" als es mit dem Auge möglich wäre betrachten zu können. Im letzten Schritt werden die Winkel vergrößert (Winkelvergrößerung). Lichtmikroskope werden häufig nur mit den Abkürzungsbuchstaben "LM" angegeben.

Bauformen

Bestandteile eines zusammengesetzten Durchlichtmikroskops einfacher Bauart: A) Okular, B) Objektiv, C) Objektträger, D) Beleuchtungslinsen, E) Objekttisch, F) Beleuchtungsspiegel

Einfache und zusammengesetzte Mikroskope

Als einfache Mikroskope werden optische Linsen bezeichnet, die eine starke Vergrößerung ermöglichen. Der Übergang zu einer im Prinzip genauso funktionierenden aber schwächer vergrößernden Lupe ist dabei fließend. Die heute üblichen Mikroskope sind dagegen zusammengesetzte Mikroskope, die so heißen, weil sie aus zwei Linsensystemen zusammengesetzt sind: Das vorderste optische Element, das Objektiv (siehe auch Abbildung), erzeugt ein Zwischenbild, welches vom Okular erneut vergrößert wird.

Durchlicht- oder Auflichtmikroskopie

Je nach der angewendeten Beleuchtungstechnik kann ein Mikroskop für Durchlicht- oder Auflichtmikroskopie verwendet werden. Bei der Durchlichtmikroskopie wird das Licht durch das Präparat hindurchgeleitet, bevor es vom Objektiv des Mikroskops aufgefangen wird. Daher sind durchsichtige oder dünn geschnittene Präparate erforderlich. Bei der Auflichtmikroskopie wird das Licht entweder vom Mikroskop kommend durch das Objektiv auf das Präparat geleitet oder von der Seite eingestrahlt (schräge Beleuchtung). Das am Präparat reflektierte Licht wird wiederum vom Objektiv aufgefangen. Auflichtmikroskopie kann demnach auch für undurchsichtige Präparate verwendet werden, zum Beispiel in den Materialwissenschaften.

Aufrechte, umgekehrte oder inverse Mikroskope

Ein inverses Mikroskop lässt zwischen Kondensor und Tisch viel Raum für das Präparat

Aufrechtes Mikroskop ist eine allgemeine Bezeichnung für Mikroskope, bei denen das Objektiv von oben auf das Präparat schaut (wie in der Abbildung). Im Gegensatz dazu ist bei einem umgekehrten oder inversen Mikroskop das Objektiv unter dem Tisch angebracht, der vergrößerte Raum zwischen Beleuchtungseinheit und Tisch erlaubt das Mikroskopieren von Präparaten mit größerer Dicke (einige bis über 10 Zentimeter) und durch die Wände von Laborgefäßen hindurch. Mikroskope mit dieser Bauform sind ein unerlässliches Instrument für Untersuchungen an lebenden Zellen in Kulturgefäßen (Zellkultur), in der Patch-Clamp-Technik sowie bei Einsatz von Mikromanipulatoren, die von oben an das Präparat herangeführt werden.

Leistungsfähigkeit

Bei optimaler Gerätebeschaffenheit und der Verwendung von Ölimmersion lassen sich mit klassischer Lichtmikroskopie, wie sie im Wesentlichen im 19. Jahrhundert entwickelt wurde, bestenfalls Objekte voneinander unterscheiden, die 0,2 bis 0,3 µm oder weiter voneinander entfernt sind.[1] Die erzielbare Auflösung ist dabei nicht etwa durch die Qualität der Geräte, sondern durch physikalische Gesetze bestimmt. Sie hängt unter anderem von der Wellenlänge des verwendeten Lichts ab.

Verfahren, die seit den neunziger Jahren des 20. Jahrhunderts entwickelt wurden, erlauben für Spezialfälle auch eine Auflösung unter diesem so genannten Abbe-Limit.

Geschichte

Die älteste überlieferte Zeichnung, die mit Hilfe eines Mikrosokops angefertigt wurde: Bienen. Franceso Stelluti, 1630.
Das zusammengesetzte Mikroskop von Robert Hooke, das er für die Arbeiten an seiner Micrographia (1665) benutzte und mit dem er die Zellen entdeckte, ist ein Auflichtmikroskop. Links die Beleuchtungseinrichtung die auf das Objekt strahlt.

Es ist nicht möglich, einen „Erfinder“ des Mikroskopes zu benennen. Das Prinzip der Vergrößerung durch mit Wasser gefüllte Glasschalen wurde bereits von den Römern beschrieben (Seneca) und Vergrößerungslinsen waren schon im 16. Jahrhundert bekannt. Ebenso ist das Okular schon weit vor dem 14. Jahrhundert verwendet worden.

Der niederländische Brillenmacher Hans Janssen und sein Sohn Zacharias Janssen werden häufig als die Erfinder des ersten zusammengesetzten Mikroskopes im Jahr 1590 angesehen. Dies basiert jedoch auf einer Erklärung von Zacharias Janssen selbst aus der Mitte des 17. Jahrhunderts. Das Datum ist dabei fragwürdig, da Zacharias Janssen selbst erst 1590 geboren wurde. Galileo Galilei entwickelte 1609 das Occhiolino, ein zusammengesetztes Mikroskop mit einer konvexen und einer konkaven Linse. Allerdings hatte Zacharias Janssen ein Gerät mit dem gleichen Funktionsprinzip bereits ein Jahr zuvor auf der Frankfurter Messe vorgeführt. Galileis Mikroskop wurde von der „Akademie der Luchse“ in Rom gefeiert, die im Jahr 1603 von Federico Cesi gegründet worden war. Eine Zeichnung des Akademiemitglieds Francesco Stelluti von 1630 gilt als älteste Zeichnung, die mit Hilfe eines Mikroskops angefertigt wurde. Auf ihr sind drei Ansichten von Bienen (von oben, unten und von der Seite) sowie Detailvergrößerungen zu sehen. Die Biene kam im Wappen der Familie Barberini vor, zu der Papst Urban VIII. gehörte. Stelluti schrieb in ein Banner oberhalb der Abbildung: „Für Urban VIII. Pontifex Optimus Maximus ..... von der Akademie der Luchse, und in ewiger Verehrung widmen wir Euch dieses Symbol[2].

Christiaan Huygens (1629-1695), ebenfalls Niederländer, entwickelte im späten 17. Jahrhundert ein einfaches Zwei-Linsen-Okularsystem. Es war achromatisch korrigiert, hatte also weniger Farbfehler und war deshalb ein großer Fortschritt in der Entwicklung des Mikroskopes. Okulare nach Huygens werden bis heute produziert, sind jedoch im Vergleich zu modernen Weitfeldokularen optisch deutlich unterlegen.

Auch Robert Hooke benutzte für die Zeichnungen seiner 1665 publizierten „Micrographia“ ein zusammengesetztes Mikroskop (siehe Abbildung). Die stärksten Vergrößerungen, die er in seinem Buch darstellte, waren 50-fach. Stärkere Vergrößerungen waren nicht möglich, da sich die Abbildungsfehler, die in der Frontlinse (Objektiv) und im Okular entstanden, multiplizierten, so dass keine Details mehr zu erkennen waren.

Einlinsiges Mikroskop, genannt Wilsons Schraubrohrmikroskop. Um 1760. Ausführlichere Legende verfügbar.
Großes Mikroskop von Carl Zeiss von 1879 mit Optiken berechnet von Ernst Abbe.

Antoni van Leeuwenhoek (sprich: Lee-u-hen-huk) (1632-1723) verfolgte daher einen anderen Ansatz. Die Vergrößerung einer Linse ist umso stärker, je stärker sie gewölbt ist. Kleine, annähernd kugelförmige Linsen haben daher die stärkste Vergrößerung. Leeuwenhoek war brillant im exakten Schleifen kleinster Linsen, eine Technik, die zuvor nur unzureichend gemeistert worden war. Seine einfachen Mikroskope mit nur einer Linse waren zwar unhandlich zu benutzen, doch da er nur mit einer Linse mikroskopierte, entfiel die Multiplikation der Abbildungsfehler. Seine Mikroskope hatten eine bis zu 270-fache Vergrößerung. So entdeckte Leeuwenhoek die von ihm so genannten „Animalkulen“, einzellige Bakterien und Protozoen.

Im Jahre 1768 beschrieb der Michel Ferdinand d'Albert d'Ailly, Duc de Chaulnes (1714–1769) das erste eigens für Messzwecke konzipierte Messmikroskop.

Robert Brown benutzte noch 1830 ein einfaches Mikroskop und entdeckte damit den Zellkern und Brownsche Molekularbewegung. Es dauerte 160 Jahre, bevor zusammengesetzte Mikroskope dieselbe Abbildungsqualität erzeugten, wie Leeuwenhoeks einfaches Mikroskop.

Bis weit ins 19. Jahrhundert hinein wurden gute zusammengesetzte Mikroskope durch Ausprobieren und anhand von Erfahrungswerten hergestellt. Ernst Abbe erarbeitete um 1880 die zum Bau besserer Mikroskope erforderlichen, noch heute gültigen physikalischen Grundlagen. Als Folge gelang es zum ersten Mal, ein Objektiv herzustellen, dessen Auflösungsgrenze nicht mehr durch die Materialgüte, sondern durch die physikalischen Beugungsgesetze limitiert wurde. Diese physikalische Auflösungsgrenze wird als das Abbe-Limit bezeichnet. Produziert wurden die entsprechenden Mikroskope zusammen mit Carl Zeiss in dessen optischen Werkstätten. Dabei profitierten sie von den von Otto Schott entwickelten optischen Gläsern und dem von August Köhler entwickelten Beleuchtungsapparat zur Köhlerschen Beleuchtung.

Prinzip des zusammengesetzten Mikroskops

Das vom Objekt kommende Licht wird durch eine Kombination von mindestens zwei Linsensystemen, dem Objektiv (3) und dem Okular (1), optisch abgebildet. Dabei wird vom Objekt durch das Objektiv ein reelles Zwischenbild erzeugt, welches durch das Okular analog zur Lupe vergrößert betrachtet wird. Die Vergrößerung des Mikroskops ist das Produkt aus Objektivvergrößerung und Okularvergrößerung. Die Objektive sind in der Regel wechselbar, so dass die Vergrößerung der jeweiligen Aufgabenstellung angepasst wird. Der Objektivrevolver (2) ermöglicht den schnellen Objektivwechsel durch Drehen des jeweils gewünschten Objektivs in den Strahlengang. Die Fokussierung erfolgt durch Höhenverstellung des Tubus oder des Objekttischs. Dieser ist häufig auch mit einem verschiebbaren Objekthalter ausgestattet, um das beobachtete Objekt vor dem Objektiv zu positionieren.

Man unterscheidet die Durchlichtmikroskopie, bei der das Objekt transparent oder sehr dünn ist und von der dem Objektiv abgewandten Seite beleuchtet wird, und die Auflichtmikroskopie. Bei dieser wird durch Beleuchtung von der dem Objektiv zugewandten Seite die Oberfläche des Objekts untersucht. Bei der Auf- und Durchlichtmikroskopie unterscheidet man außer der normalen Hellfeldmikroskopie die Dunkelfeldmikroskopie und die Phasenkontrastmikroskopie.

Beleuchtungsoptik

Die Köhlersche Beleuchtung ist die übliche Methode einer Durchlichtanordnung. Sie besteht aus folgenden Elementen:

Zum Erreichen der optimalen Leistungsfähigkeit eines Mikroskops ist eine korrekte Abstimmung der Blendenabbildung und der Objektabbildung nötig. Das Einstellen dieser Abstimmung wird auch als Köhlern bezeichnet. Bei der Köhlerschen Beleuchtung bildet der Kollektor die Lichtquelle in die Aperturblende ab und gleichzeitig der Kondensor die Leuchtfeldblende in das Objekt.

Auflösung

Zur Vergrößerung des Mikroskps siehe: Vergrößerung_(Optik)#Mikroskop

Mikroskopobjektiv: Achromat mit Numerischer Apertur 0,8 und 60-facher Vergrößerung
Mikroskopobjektiv im Querschnitt: Achromat mit Numerischer Apertur 0,65 und 40-facher Vergrößerung

Entscheidend für die Fähigkeit eines Mikroskops, Strukturen kleiner Objekte unterscheidbar abzubilden, ist (neben dem Kontrast) nicht die Vergrößerung, sondern die Auflösung. Diese Tatsache ist nicht durch strahlenoptische Überlegung zu verstehen, sondern ergibt sich aus der Wellennatur des Lichts. Ernst Abbe erkannte als erster den entscheidenden Einfluss der Numerischen Apertur auf die Auflösung. Er gab als förderliche Vergrößerung

V_{\rm M} = 500 \ldots 1000 \cdot NA

an. Dies bedeutet, dass die kleinsten vom Objektiv aufgelösten Strukturen nach der Abbildung durch das Okular im Auge noch aufgelöst werden können, also etwa unter einem Winkel von 2' (Bogenminuten) erscheinen. Wird die Vergrößerung höher gewählt (z. B. durch ein Okular mit hoher Vergrößerung), wird das Bild des Objekts zwar größer dargestellt, aber es sind keine weiteren Objektdetails erkennbar. Objektive und Okulare müssen also aufeinander abgestimmt sein.

Nach den Gesetzen der Wellenoptik ist die Auflösung des Lichtmikroskops durch die Größe der Wellenlänge der Beleuchtung beschränkt, siehe Numerische Apertur.

Auflösungen jenseits des Abbe-Limits

Vergleich des Auflösungsvermögens von konfokaler Laser-Scanning Mikroskopie (oben) und 3D-SIM-Mikroskopie (unten). Zellkernporen (anti-NPC, rot), Zellkernhülle (anti-Lamin B, grün), sowie Chromatin (DAPI, blau) wurden in einer Mauszelle simultan angefärbt. Der Maßstabsbalken entspricht 1 µm.

Seit den 60er Jahren des 20. Jahrhunderts wurden einige Methoden entwickelt, die eine optische Auflösung jenseits des Abbe-Limits ermöglichen. Sie basieren alle darauf, dass Abbes Theorie nur für unendlich ausgedehnte Objekte gültig ist. Die unendliche Objektausdehnung ist eine Grundvoraussetzung für die beugungsoptischen Betrachtungen, die Abbe zu seiner Berechnung der Auflösungsgrenze führten. Schränkt man den Beobachtungsbereich ein, gilt das Abbe-Limit in seiner ursprünglichen Form nicht mehr. Man spricht darum auch von Superauflösung.

Die Einschränkung des Beobachtungsbereiches kann, wie bei der in den 1950er Jahren erfundenen Konfokalmikroskopie, durch kleine Lochblenden erfolgen oder wie bei der in den 1990er Jahren entwickelten optischen Rasternahfeldmikroskopie durch Abtastung der Oberfläche mit einer sehr kleinen Sonde. Die ebenfalls in den 1990er Jahren entwickelte 4Pi- und STED-Mikroskopie nutzt gezielte Fluoreszenzanregung in biologischen Proben um den Beobachtungsbereich einzuschränken. Bei der 3D-SIM-Mikroskopie wird eine Verbesserung der Auflösung durch strukturierte Beleuchtung erreicht. Bei der „Photoactivated Localization Microscopy“ wird diese Verbesserung durch sequentielle Aktivierung von einzelnen fluoreszierenden Proteinen erreicht.

Stimulated emission depletion

Hauptartikel: STED

Stimulated emission depletion (STED) wurde vom Göttinger Physiker Stefan Hell und seinen Mitarbeitern entwickelt. Er erhielt für seine entsprechenden Arbeiten 2006 den Deutschen Zukunftspreis. Auf der Basis einer Weiterentwicklung der Abbe'schen Formel bietet diese fluoreszenzbasierte Technik theoretisch eine bis zu zehnmal bessere Auflösung. Neu an diesem Mikroskopieverfahren ist, dass die Auflösung nicht mehr durch die Lichtwellenlänge begrenzt wird, sondern nur noch durch die Menge des vom untersuchten Objekt abgestrahlten Lichts (die Zahl der auffangbaren Photonen). Leica Microsystems bietet seit Oktober 2007 ein entsprechendes Gerät an.

Da die Größe von Proteinkomplexen im Bereich von 10 bis 200 Nanometern liegt, wird diese Technik es möglicherweise erlauben, lichtmikroskopisch in molekulare Größenordnungen vorzudringen. So konnten mit STED-Mikroskopie etwa einzelne Bläschen mit Nervenbotenstoffen (synaptische Vesikel) aufgelöst werden. Anders als bei einem Elektronenmikroskop können mit diesem Verfahren theoretisch auch intakte, lebende Zellen untersucht werden.

Auch für die Herstellung kleinster elektronischer Schaltkreise ist STED möglicherweise interessant. Mit geeigneten schaltbaren Molekülen ließe sich das STED-Prinzip umkehren und zum Herstellen feinster Nanostrukturen verwenden. Obwohl das Verfahren vermutlich für Massenspeicher zu langsam wäre, könnte man beliebig kleine Strukturen mit sichtbarem Licht anfertigen.

Siehe auch

Weblinks

Quellenangaben

  1. Ernst Abbe, „Beiträge zur Theorie des Mikroskops und der Mikroskopischen Wahrnehmung“, Archiv für Mikroskopische Anatomie 9, S. 413-468, 1873.
  2. Stephen Jay Gould, Die Lügensteine von Marrakesch, pp. 52-53 S. Fischer Verlag, 2003

Wikimedia Foundation.

Игры ⚽ Поможем написать реферат

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Lichtmikroskop — „Großes Mikroskop“ von Carl Zeiss von 1879 mit Optiken berechnet von Ernst Abbe. Lichtmikroskope sind Geräte, die stark vergrößerte Bilder von kleinen (oft für das Auge nicht sichtbaren) Strukturen oder Objekten durch die Ausnutzung optischer… …   Deutsch Wikipedia

  • Phasenkontrastmikroskopie — Das Phasenkontrast Verfahren ist ein Abbildungsverfahren in der Lichtmikroskopie. Dabei wird ausgenutzt, dass sich neben der Amplitude auch die Phase von Lichtwellen beim Durchgang durch ein Medium abhängig von seinem Brechungsindex verändert. So …   Deutsch Wikipedia

  • Max-Planck-Institut für Medizinische Forschung — MPI für medizinische Forschung Kategorie: Forschungseinrichtung Träger: Max Planck Gesellschaft Rechtsform des Trägers …   Deutsch Wikipedia

  • Phasenkontrast — Die Artikel Phasenkontrastmikroskop und Phasenkontrast überschneiden sich thematisch. Hilf mit, die Artikel besser voneinander abzugrenzen oder zu vereinigen. Beteilige dich dazu an der Diskussion über diese Überschneidungen. Bitte entferne… …   Deutsch Wikipedia

  • Phasenkontrastverfahren — Die Artikel Phasenkontrastmikroskop und Phasenkontrast überschneiden sich thematisch. Hilf mit, die Artikel besser voneinander abzugrenzen oder zu vereinigen. Beteilige dich dazu an der Diskussion über diese Überschneidungen. Bitte entferne… …   Deutsch Wikipedia

  • Cremer C — Christoph Cremer aus Freiburg im Breisgau ist ein deutscher Physiker und Professor an der Ruprecht Karls Universität Heidelberg, der die konventionelle lichtoptische Auflösungsgrenze („Abbe Limit“) durch unterschiedliche Methoden überwunden hat… …   Deutsch Wikipedia

  • Max-Planck-Institut für medizinische Forschung — MPI für medizinische Forschung Kategorie: Forschungseinrichtung Träger: Max Planck Gesellschaft Rechtsform des Trägers: Eingetrag …   Deutsch Wikipedia

  • Laser-Mikrotom — Rotationsmikrotom mit feststehendem Glasmesser und beweglicher Probe Ein Mikrotom (von griech. mikros „klein“ und temnein „schneiden“) ist ein Schneidegerät, mit dem man sehr dünne Schnitte erstellen kann. Es dient zur Herstellung mikroskopischer …   Deutsch Wikipedia

  • Lasermikrotom — Rotationsmikrotom mit feststehendem Glasmesser und beweglicher Probe Ein Mikrotom (von griech. mikros „klein“ und temnein „schneiden“) ist ein Schneidegerät, mit dem man sehr dünne Schnitte erstellen kann. Es dient zur Herstellung mikroskopischer …   Deutsch Wikipedia

  • Ultramikrotom — Rotationsmikrotom mit feststehendem Glasmesser und beweglicher Probe Ein Mikrotom (von griech. mikros „klein“ und temnein „schneiden“) ist ein Schneidegerät, mit dem man sehr dünne Schnitte erstellen kann. Es dient zur Herstellung mikroskopischer …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”