Modulform

Modulform

Der klassische Begriff einer Modulform ist der Oberbegriff für eine breite Klasse von Funktionen auf der oberen Halbebene (Elliptische Modulformen) und deren höherdimensionalen Verallgemeinerungen (z. B. Siegelsche Modulformen), der in den mathematischen Teilgebieten der Funktionentheorie und Zahlentheorie betrachtet wird. Der moderne Begriff einer Modulform ist dessen umfassende Neuformulierung in Termen der Darstellungstheorie (automorphe Darstellungen) und arithmetischen Geometrie (p-adische Modulformen). Klassische Modulformen sind Spezialfälle der sogenannten automorphen Formen.

Inhaltsverzeichnis

Geschichte

Begründer der klassischen (rein analytischen) Theorie der Modulformen des 19. Jahrhunderts sind Richard Dedekind, Felix Klein, Gotthold Eisenstein und Henri Poincaré. Die moderne Theorie der Modulformen entstand in der ersten Hälfte des zwanzigsten Jahrhunderts durch Erich Hecke und Carl Ludwig Siegel. Modulformen in Termen der Darstellungstheorie stammen von Robert Langlands. p-adische Modulformen treten zuerst bei Nicholas Katz und Jean-Pierre Serre auf.

Elliptische Modulformen für \mbox{SL}_2(\mathbb{Z})

Es sei

\mathbb H=\{z\in\mathbb C\mid\mathrm{Im}\,z>0\}

die obere Halbebene, d. h. die Menge aller komplexen Zahlen mit positivem Imaginärteil.

Für eine ganze Zahl k heißt eine holomorphe bzw. meromorphe Funktion f auf der oberen Halbebene eine holomorphe bzw. meromorphe elliptische Modulform vom Gewicht k zur Gruppe  \mbox{SL}_2(\mathbb{Z}), wenn sie

f\!\left(\frac{az+b}{cz+d}\right)=(cz+d)^kf(z) für alle z\in\mathbb H und a,b,c,d\in\mathbb Z mit adbc = 1
erfüllt und
  • „holomorph bzw. meromorph im Unendlichen“ ist: Das bedeutet, dass die Funktion
\tilde f(q)=f(z) mit q=\mathrm e^{2\pi\mathrm i \,z} für 0 < | q | < 1
bei q = 0 holomorph bzw. meromorph auf die Einheitskreisscheibe fortsetzbar ist.

Man beachte, dass aus der ersten Bedingung f(z + 1) = f(z) folgt; deshalb ist \tilde f(q) wohldefiniert.

Ist f(z) meromorph und k = 0, so nennt man f eine Modulfunktion.

Ist die Funktion f(z) holomorph auf der oberen Halbebene und im Unendlichen, so heißt f eine ganze Modulform.

Hat darüber hinaus f(z) eine Nullstelle bei z=\mathrm i\infty, so nennt man f eine Spitzenform.

Eigenschaften

Für ungerades k ist stets f = 0, die folgenden Aussagen gelten daher für gerades k.

Die Modulformen vom Gewicht k bilden einen \mathbb{C}-Vektorraum, ebenso die ganzen Modulformen und auch die Spitzenformen.

Bezeichnet man diese Vektorräume mit \mathbb{V}_k, \mathbb{M}_k und \mathbb{S}_k, so gilt:

\mathbb{S}_k \subset \mathbb{M}_k \subset \mathbb{V}_k.

Für die Dimension dieser Vektorräume gilt:

\mathrm{dim} \, \mathbb{M}_k = \begin{cases} [\frac{k}{12}], & \mathrm{falls} \; k\equiv 2 \; \mathrm{(mod} \, \mathrm{ 12)} \\  \mathrm{[}\frac{k}{12}]+1  & \mathrm{falls} \; k\not\equiv 2 \; \mathrm{(mod} \, \mathrm{ 12)} \end{cases}


Da durch die Multiplikation mit der Spitzenform Δ (Diskriminante) vom Gewicht 12 ein Isomorphismus von \mathbb{M}_{k-12} nach \mathbb{S}_k gegeben ist, gilt:

\mathrm{dim} \, \mathbb{S}_k = \mathrm{dim} \, \mathbb{M}_{k-12} \quad \mathrm{ falls } \quad k \geq 12

Beispiele

Die einfachsten Beispiele für ganze Modulformen vom Gewicht k sind die sogenannten Eisensteinreihen Gk, für eine Modulfunktion die j-Funktion oder absolute Invariante und für eine Spitzenform die Diskriminante Δ.

Literatur

  • Eberhard Freitag, Rolf Busam: Funktionentheorie 1, 4. Aufl., Springer, Berlin (2006), ISBN 3-540-31764-3
  • Max Koecher, Aloys Krieg: Elliptische Funktionen und Modulformen, 2. Aufl., Springer, Berlin (2007) ISBN 978-3-540-49324-2

Wikimedia Foundation.

Игры ⚽ Нужно решить контрольную?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Diskriminante (Modulform) — Die Diskriminante Δ ist eine auf der oberen Halbebene holomorphe Funktion. Sie spielt eine wichtige Rolle in der Theorie der elliptischen Funktionen und Modulformen. Inhaltsverzeichnis 1 Definition 2 Produktentwicklung …   Deutsch Wikipedia

  • Modulfunktion — Der klassische Begriff einer Modulform ist der Oberbegriff für eine breite Klasse von Funktionen auf der oberen Halbebene (Elliptische Modulformen) und deren höherdimensionalen Verallgemeinerungen (z. B. Siegelsche Modulformen), der in den… …   Deutsch Wikipedia

  • Spitzenform — Der klassische Begriff einer Modulform ist der Oberbegriff für eine breite Klasse von Funktionen auf der oberen Halbebene (Elliptische Modulformen) und deren höherdimensionalen Verallgemeinerungen (z. B. Siegelsche Modulformen), der in den… …   Deutsch Wikipedia

  • Thetafunktion — In der Mathematik sind Thetafunktionen eine spezielle Klasse von Funktionen mehrerer komplexer Variablen. Systematisch untersucht wurden Thetafunktionen zuerst von Carl Gustav Jakob Jacobi. Thetafunktionen spielen eine Rolle in der Theorie der… …   Deutsch Wikipedia

  • Modularitätssatz — Der Modularitätssatz (früher Taniyama Shimura Vermutung) ist ein mathematischer Satz über elliptische Kurven und Modulformen. Er wurde 1958 von Yutaka Taniyama und Gorō Shimura vermutet und im Jahr 2001 von Christophe Breuil, Brian Conrad, Fred… …   Deutsch Wikipedia

  • Elementare Zahlentheorie — Ursprünglich ist die Zahlentheorie (auch: Arithmetik) ein Teilgebiet der Mathematik, das sich allgemein mit den Eigenschaften der ganzen Zahlen und insbesondere mit den Lösungen von Gleichungen in den ganzen Zahlen (Diophantische Gleichung)… …   Deutsch Wikipedia

  • J-Funktion — in der komplexen Ebene (ohne Faktor 12^3) Die j Funktion oder absolute Invariante spielt eine wichtige Rolle in der Theorie der elliptischen Funktionen und Modulformen. Inhaltsverzeichnis 1 Definition …   Deutsch Wikipedia

  • Modulgruppe — Lineare Gruppen dienen in der Mathematik der Beschreibung kontinuierlicher Symmetrien. Die spezielle lineare Gruppe vom Grad n über einem Körper (oder allgemeiner einem kommutativen, unitären Ring), , ist die Gruppe aller n×n Matrizen mit… …   Deutsch Wikipedia

  • Praxissemester — Das Praxissemester ist Teil des Hauptstudiums an Hochschulen und soll den Studenten erste Einblicke in die Wirtschaft, in die Schule oder in andere Praxisfelder verschaffen. Für die Dauer des Praxissemesters sollen die Studenten Ihrem Studiengang …   Deutsch Wikipedia

  • Vermutung von Birch und Swinnerton-Dyer — Die Vermutung von Birch und Swinnerton Dyer ist eines der wichtigsten ungelösten Probleme der modernen Mathematik und macht Aussagen zur Zahlentheorie auf elliptischen Kurven. Inhaltsverzeichnis 1 Formulierung 2 Status 3 Literatur …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”