- Luft-Luft-Rakete
-
Eine Luft-Luft-Rakete ist ein Flugkörper, der als Waffe im Luftkampf eingesetzt wird. Der Name besagt, dass sie in der Luft abgefeuert wird, um Ziele in der Luft zu treffen.
International wird häufig die englische Bezeichnung Air-to-Air Missile (AAM) oder auch Airborne Intercept Missile (AIM) verwendet.
Inhaltsverzeichnis
Geschichte
Während des Ersten Weltkriegs setzten die alliierten Luftwaffen zur Abwehr deutscher Luftschiffe kleine ungelenkte Le-Prieur-Raketen ein, die von Doppeldeckern getragen wurden. Die herkömmliche Flugzeugbewaffnung mit MGs kleinen Kalibers war gegenüber den Zeppelinen relativ wirkunglos. Le-Prieur-Raketen waren jedoch sehr ungenau und hatten eine kurze Reichweite. Als verbesserte Rohrwaffen und Munition verfügbar waren, wurden sie nicht mehr eingesetzt.
Während des Japanisch-Sowjetischen Grenzkonflikts flogen einige sowjetische Polikarpow I-16-Piloten mit an vier Startschienen pro Flügelseite befestigten ungelenkten „RS“-Flugkörpern zusätzlich zur MG-Bewaffnung. Damit konnte erstmalig am 20. August 1939 ein japanisches Nakajima Ki-27-Flugzeug abgeschossen werden.
Bei diesen frühen Luft-Luft-Raketen handelte es sich um ungelenkte Raketen, die in Salven abgefeuert wurden.
Zu Beginn des Zweiten Weltkrieges vergab das Reichsluftfahrtministerium verschiedene Entwicklungsaufträge für gelenkte Luft-Luft-Raketen. Nach dem Einsatz eher primitiver Waffen begann 1943 die Arbeit an der Henschel Hs 117H, die auf einer Boden-Luft-Rakete basierte. Annähernd gleichzeitig wurde die Ruhrstahl X-4 entwickelt, die bessere Leistungen erbrachte. Beide Entwicklungen kamen zu spät, um noch im Kampf eingesetzt zu werden.
Die einzige von deutscher Seite im Zweiten Weltkrieg eingesetzte Luft-Luft-Rakete war die ungelenkte R4/M „Orkan“. Von ihr wurden bis zum Kriegsende 12.000 Stück produziert.
In den 1950er- und 1960er-Jahren wurden die ungelenkten Raketen durch gelenkte Luft-Luft-Raketen mit neu entwickelten Infrarot- oder Radarsuchköpfen ergänzt und schließlich abgelöst.
Klassifizierung
In der westlichen Welt sind Luft-Luft-Raketen fast ausschließlich unter ihren englischen Bezeichnungen bekannt. Die Gründe dafür liegen in der Vorreiterrolle der USA und der NATO-Mitgliedschaft der anderen westlichen Länder. Luft-Luft-Raketen werden nach ihrer Einsatzreichweite klassifiziert.
Kurz- und Mittelstrecke
- Visual Range Air-to-Air Missile (VRAAM)
Sichtbereichs-Luft-zu-Luft-Rakete – dieser international gebräuchliche, englische Begriff bezeichnet Lenkflugkörper für Ziele zur Bekämpfung auf Sichtreichweite. Hier wird unterschieden in:
- Short Range Air-to-Air Missile (SRAAM)
Kurzstrecken-Luft-zu-Luft-Rakete – für kurze bis sehr kurze Distanzen, oder
- Within-Visual-Range Air-to-Air Missile (WVRAAM)
Sichtbereichs-Luft-zu-Luft-Rakete – bei mittleren Reichweiten üblich.
- Advanced Short-Range Air-to-Air Missile (ASRAAM)
Verbesserte Kurzstrecken-Luft-zu-Luft-Rakete – ist eine weiterentwickelte/verbesserte Luft-zu-Luft-Rakete für kurze Reichweiten.
- Advanced Medium-Range Air-to-Air Missile (AMRAAM)
Verbesserte Mittelstrecken-Luft-zu-Luft-Rakete – ist eine weiterentwickelte/verbesserte Luft-zu-Luft-Rakete für mittlere Reichweiten.
Langstrecke
- Beyond Visual Range Air-to-Air Missile (BVRAAM)
Außersichtbereichs-Luft-zu-Luft-Rakete – ist eine Rakete mit Reichweite bis hinter den Sichthorizont. Sie ist in der Lage, auch außerhalb der Sichtweite des Piloten befindliche Ziele zu bekämpfen.
Aufbau
Der prinzipielle Aufbau einer Luft-Luft-Rakete besteht aus einem Suchkopf mit Lenksystem, dem Gefechtskopf und dem Antriebsteil.
Suchkopf
Für den Piloten wichtig ist die Unterscheidung in Lenkkörper mit weiterer Zielführung nach dem Abfeuern und solchen, die keiner weiteren Aufmerksamkeit des Piloten oder des Waffenleitrechners des abfeuernden Flugzeuges bedürfen (so genannte fire-and-forget-Lenkwaffen). Ein Suchkopf besteht aus einem oder mehreren Sensoren (Sucher), meist in der Spitze der Rakete, der Steuerung (entweder VPS oder SPS), die die Sensorinformationen in Steuerbefehle umsetzt und den Steuerflächen, die die Flugrichtung der Rakete beeinflussen.
Vier unterschiedliche Arten von Suchern sind in Verwendung, die jeweils andere Einsatzprofile haben:
- Bildgebend
- Es handelt sich hierbei um passives Suchverfahren, bei dem ein bildgebender Sensor (Focal Plane Array meist CCD oder CMOS) optisch (sichtbares Licht) oder quasioptisch (UV/Infrarot) auf die elektromagnetischen Emissionen des Zieles reagiert. Neuere Suchköpfe sind multispektral ausgeführt, um die Störfestigkeit zu erhöhen. Bildgebende Sucher finden meist in Kurzstreckenraketen Verwendung, da ihre Empfindlichkeit und Ansprechschwelle und damit die Reichweite begrenzt sind.
- Halbaktives Radar
- Ein halbaktives Zielsuchverfahren, bei dem das Ziel durch eine von der Rakete unabhängige Radaranlage beleuchtet wird und der Suchkopf der Rakete der von der Oberfläche des Zieles reflektierten Radarstrahlung folgt. Da zur Zielbeleuchtung zumeist das Radar des abfeuernden Flugzeugs verwendet wird, was dessen Verbleib im Kampfgebiet erzwingt und seine Verwundbarkeit enorm erhöht, werden halbaktive Sucher in neueren Raketentypen mehr und mehr durch aktive ersetzt. Eine Sonderform ist das sogenannte Beam Riding, bei dem die Rakete direkt der Keule des Radars folgt. Der Empfänger liegt dabei im Heck der Rakete. Dieses Verfahren garantiert hohe Störresistenz, hat aber die gleichen Nachteile wie die normale halbaktive Steuerung
- Aktives Radar
- Ein aktiver Sucher, bei dem der Radarsender und der Radarempfänger in der Rakete vorhanden sind.
- Passives Radar
- Ein passiver Sucher, bei dem die Rakete die Emissionsquellen des Zielflugzeuges anpeilt.
Bei modernen Luft-Luft-Raketen werden oftmals mehrere Sucher in einem Suchkopf kombiniert, um die Störfestigkeit zu erhöhen und die Vorwarnzeit für den Gegner zu reduzieren. Auch verfügen Mittel- und Langstreckenraketen zusätzlich über Trägheitsnavigationssysteme oder Satellitennavigation, die es ermöglichen, große Teile der Flugstrecke zum Ziel ohne Emissionen und mit hoher Resistenz gegen elektronische Gegenmaßnahmen des Gegners zurückzulegen. Erst in unmittelbarer Nähe des Gegners wird der aktive Suchkopf aktiviert. Auf diese Art lassen sich auch passive bildgebende Suchköpfe in Langstreckenraketen einsetzen.
Nahezu alle Luft-Luft-Raketen verfügen über eine Form von Datenlink zum Startflugzeug, mindestens simplex als Notausschalter, manchmal aber auch duplex, um eine Zielzuweisung nach dem Start der Waffe durchzuführen (lock-on after launch, LOAL) oder zu verändern.
Gefechtskopf
Der Gefechtskopf besteht aus einem oder mehreren Zündern und einer Sprengladung. Als Zünder kommen entweder Annäherungs- oder Aufschlagzünder zum Einsatz.
Raketen mit Aufschlagzünder enthalten meist kleinere Sprengstoffmengen und sind damit leichter. Dafür müssen sie über hochwertige Zielführungssysteme verfügen. Die Schädigung erfolgt dann durch Durchschlagen des Ziels und punktuelle Zerstörung.
Die meisten Luft-Luft-Raketen verwenden Annäherungszünder und Spreng-Splitter- oder Continuous-Rod-Ladungen. Spreng-Splitter-Ladungen bestehen aus von fragmentierten Metallmänteln umschlossenem Sprengstoff, so dass nach der Explosion Splitterwolken entstehen. Die Continuous-Rod-Ladung besteht aus einem um eine Sprengladung gefalteten Metallring, der durch die Explosion des Sprengstoffs blitzartig entfaltet wird und Ziele innerhalb seines Durchmessers durchtrennt.
Heute finden ausschließlich konventionelle Sprengköpfe Verwendung. Während des Kalten Krieges verfügten die Vereinigten Staaten über die ungelenkte Luft-Luft-Rakete AIR-2 Genie mit einem nuklearen 1,5-kT-Gefechtskopf sowie die gelenkte Luft-Luft-Rakete AIM-26 Falcon mit einem nuklearen 0,25-kT-Gefechtskopf. Beide Waffen waren für die Vernichtung sowjetischer Bomberverbände vorgesehen.
Antrieb
Die meisten Luft-Luft-Raketen werden von einem Raketentriebwerk angetrieben. Die erreichten Geschwindigkeiten liegen je nach Antriebsart, Gewicht und Einsatzzweck (Kurz-, Mittel- oder Langstreckenwaffe) zwischen Mach 2 und Mach 5. Eine Eigenschaft neuerer Antriebe ist die geringe Entwicklung von Rauch beim Verbrennen. Dies macht es dem Piloten und der Sensorik des anvisierten Flugzeuges schwieriger, die Rakete rechtzeitig zu erkennen und Gegenmaßnahmen einzuleiten. Es werden folgende Antriebsarten eingesetzt:
- Feststoffraketentriebwerk
- Die Vorteile von Feststoff liegen in der guten Handhabbarkeit (Lagerung, Montage) und Schubkraft der Treibstoffes, der Nachteil in der schlechten Steuerbarkeit des Schubs, da eine einmal gestartete Reaktion des Treibstoffes nicht mehr gedrosselt oder gar gestoppt werden kann. Feststoffraketentriebwerke kommen bei Luft-Luft-Lenkwaffen aller Reichweiten zum Einsatz. Eine neuere Entwicklung auf dem Gebiet der Feststofftriebwerke sind Doppelpulsmotoren. Dabei wird die Brennkammer mit einer Trennwand in einen vorderen und einen hinteren Teil segmentiert. Während des Abbrands des Erstpulstreibsatzes wird der Zweitpulstreibsatz durch eine Trennvorrichtung vor den heißen Gasen und somit vor vorzeitiger Zündung geschützt. Beim Zünden der vorderen Brennkammer zerplatzt die Trennwand, wenn nur die hintere gezündet wird bleibt sie intakt. Die beiden Teile können somit entweder nacheinander mit einem beliebig wählbaren Zeitabstand oder gleichzeitig gezündet werden, um Reichweite und Trefferquote zu erhöhen. Ein wesentlicher Vorteil dieser Antriebsbauweise ist, dass sich der Flugkörper während der Funktion von Erstpuls-und Zweitpulstreibsatz aerodynamisch identisch verhält. Feststoffraketentriebwerk werden in den meisten Luft-Luft-Raketen verwendet.
- Flüssigkeitsraketentriebwerk
- Flüssigkeitsraketentriebwerke wurden vor allem in der Anfangszeit der Entwicklung von Luft-Luft-Raketen eingesetzt, als entsprechende Feststofftriebwerke noch nicht zur Verfügung standen. Sie haben den Vorteil einer besseren Steuerbarkeit und den Nachteil eines komplexeren Aufbaus. Auch können die verwendeten Treibstoffe zur Korrosion des Motors führen. Diese Technik wird heute nicht mehr verwendet. Historisches Beispiel ist die Ruhrstahl X-4.
- Staustrahltriebwerk
- Staustrahltriebwerke sind luftatmende Strahltriebwerke, die nur bei Überschallgeschwindigkeit funktionieren. Daher ist für den Start ein zusätzlicher Booster erforderlich. Vorteil ist der höhere Wirkungsgrad, der einen geringeren Treibstoffbedarf im Gegensatz zu Feststoffraketen bedeutet, was eine größerer Reichweite oder einen leichteren Antrieb erlaubt. Auch muss kein Oxidationsmittel mitgeführt werden. Ein Staustrahltriebwerk wird zum Beispiel bei der MBDA Meteor angewendet.
Anwendung
Start
Bei Luft-Luft-Lenkwaffen wird oft die maximale Reichweite angegeben. Die effektive Reichweite einer Waffe hängt allerdings von Faktoren wie Flughöhe und Geschwindigkeit der Startplattform sowie Position und Flugrichtung des Ziels ab. So hat die AA-12 Adder / R-77 eine Reichweite von ~100 km. Diese Angabe bezieht sich auf ein Ziel in großer Höhe, das auf das abfeuernde Kampfflugzeug frontal zufliegt und bis zum Endanflug (Terminus: Endgame) ungewarnt bleibt sowie seinen Kurs beibehält. In niedriger Höhe und wenn das Ziel von hinten bekämpft wird, reduziert sich die effektive Reichweite um 75 bis 80 % auf 20 bis 25 km. Wird das Ziel vorgewarnt und fliegt es Ausweichmanöver, reduziert sich die Reichweite nochmals. Folgende Leistungsparameter bestimmen dabei die Effektivität einer Luft-Luft-Lenkwaffe:
- A-Pole
- Distanz der Startplattform zum Ziel, wenn der Flugkörper seinen Sucher aktiviert und das Ziel selbst aufschaltet
- F-Pole
- Distanz der Startplattform zum Ziel, wenn der Flugkörper am Ziel ankommt
- Launch Success Zone
- Zielbereich, in dem der Flugkörper eine hohe Trefferquote aufweist, wenn das Ziel nicht vorgewarnt wurde
- No-Escape Zone
- Zielbereich, in dem der Flugkörper eine hohe Trefferquote aufweist, selbst wenn das Ziel vorgewarnt wurde und Gegenmaßnahmen wie Flares, Chaffs und Ausweichmanöver durchführt
- All-Aspect
- Der Flugkörper kann ein Ziel aus jedem Winkel aufschalten und nicht nur von hinten (nur bei infrarotgelenkten Waffen von Bedeutung)
- Off-Boresight
- Beschreibt die Fähigkeit, Ziele abseits der Längsachse erfassen zu können, also den Schwenkwinkel des Suchers
- Nachführrate
- Geschwindigkeit, mit der sich der Suchkopf bewegen kann
In Abhängigkeit von den oben genannten Parametern und der gewählten Einsatztaktik wird der Flugkörper dann abgefeuert. Muss beispielsweise ein Transportflugzeug eskortiert werden, macht es Sinn, die Waffe auf maximale Entfernung der Launch Success Zone abzufeuern. Wenn der Angegriffene nun den Kurs ändert und wendet, verfehlt die Lenkwaffe das Zielflugzeug, der Angriff des Gegners auf das Transportflugzeug wird dadurch aber verhindert oder erschwert. In Luftkämpfen mit vielen Gegnern macht es wiederum Sinn, den Flugkörper erst dann auf den Feind abzufeuern, wenn sich dieser innerhalb der No-Escape-Zone befindet.
Bei Waffen mittlerer und großer Reichweite wird dem Lenkflugkörper meist beim Start die aktuelle Position und der Kurs des Zieles von der Trägerplattform übermittelt. Die Navigation während der Flugphase erfolgt dann mit einem inertialen Navigationssystem und einem Datenlink zur Startplattform. Durch diesen Datenlink kann das Radar der Startplattform das Lenksystem der Waffe kontinuierlich mit neuen Zieldaten versorgen, so dass dieses die Flugbahn der Rakete optimieren kann, um eine möglichst hohe Auffindwahrscheinlichkeit zu erzielen, wenn die Lenkwaffe ihren Sucher im Zielgebiet aktiviert. Besonders bei Flugkörpern hoher Reichweite ist dies von großer Bedeutung, da das Trägheitsnavigationssystem mit zunehmender Entfernung immer ungenauer wird und das Ziel mehr Zeit hat, seinen Kurs zu ändern und so eine Erfassung durch die Waffe selbst zu verhindern. Allerdings muss sich die Trägerplattform der Lenkwaffe zuwenden, um die Daten senden zu können, so dass der Vorteil der höheren Präzision in einigen Kampfsituationen nicht effektiv genutzt werden kann; auch kann der Datenlink durch gegnerische elektronische Gegenmaßnahmen gestört werden.
Bei Waffeneinsatz werden folgende NATO-Codewörter verwendet:
- Fox One
- Start einer Lenkwaffe mit halbaktiven Radarsuchkopf (Beispiel: AIM-7 Sparrow)
- Fox Two
- Start einer Lenkwaffe mit Infrarotsuchkopf (Beispiel: AIM-9 Sidewinder)
- Fox Three
- Start einer Lenkwaffe mit aktiven Radarsuchkopf (Beispiel: AIM-120 AMRAAM)
- Broke lock
- Verlust von Sucherkontakt mit Ziel, wenn Waffe noch am Starter hängt, meist in Luftkämpfen mit Kurzstreckenwaffen
- Locked
- Ziel wurde mit Bordradar aufgeschaltet
- Pitbull
- Lenkwaffe hat das Ziel mit eigenem Radar aufgeschaltet, nur bei Waffen mit aktiven Radarsuchkopf möglich, kommt nach Fox Three
- Maddog
- Lenkwaffe hat das Ziel bereits von der Startschiene aus mit eigenem Radar aufgeschaltet, wird dann statt Fox Three verwendet
Gegenmaßnahmen
Der erste Schritt bei der Einleitung von Gegenmaßnahmen ist das Erkennen, dass ein Flugkörper auf das eigene Flugzeug abgefeuert wurde. Es folgt die Bestimmung der Richtung und der Entfernung sowie eine Klassifizierung der Rakete in infrarot-(IR) oder radargesteuert. Hierbei wird der Pilot eines modernen Kampfflugzeuges durch den Bordrechner unterstützt, der auch die elektronische Gegenmaßnahmen der Flugzeugs koordiniert.
Je nach der Einstufung des Lenkkörpers leitet der Pilot erste Gegenmaßnahmen durch den Ausstoß von Täuschkörpern ein. Für IR-Raketen sind dies so genannte Flares, kleine Magnesiumfackeln, die starke Hitzeentwicklung zeigen und so den Suchkopf der Rakete ablenken beziehungsweise die Wärmeabstrahlung des Flugzeugs überdecken sollen.
Radargelenkte Raketen werden durch Abwurf von Düppel (en) getäuscht, die kleine Wolken aus Metallfolienstücken bilden. Diese Wolken reflektieren die Radarstrahlung des Suchkopfes (oder des angreifenden Flugzeuges) besser als das angegriffene Flugzeug und werden zum leichteren Opfer.
Moderne Luftlenkwaffen sind jedoch in der Lage, nach kurzer Zeit solche Täuschkörper zu identifizieren und lassen sich so nur kurzzeitig ablenken. Die Herausforderung des angegriffenen Piloten besteht also darin, die Gegenmaßnahmen mit anderen Methoden zu kombinieren, zum Beispiel mit Ausweichmanövern. Der Vorteil der Rakete ist dabei gleichzeitig ihr Nachteil: Ihre Geschwindigkeit. Aufgrund der bis zu doppelten Geschwindigkeit gegenüber dem angegriffenen Flugzeug verliert sie das Ziel aus dem Suchbereich, wenn sie ausmanövriert wurde. Im Gegensatz zum angegriffenen Flugzeug wird die Manövrierfähigkeit des Lenkflugkörpers jedoch nicht durch die G-Toleranz des Menschen eingeschränkt. Während die Manöver dessen auf 9g, der 9-fachen Erdbeschleunigung, begrenzt sind, bevor der g-LOC eintritt, können Luft-Luft-Raketen bis zu 70g überstehen. Die Kraft ist dabei linear von der Masse, quadratisch von der Geschwindigkeit des Flugkörpers und umgekehrt proportional vom Radius der geflogenen Kurve abhängig.
Zwingt der angegriffene Pilot die Rakete in eine enge Kurve, kann der Lenkflugkörper an seine Toleranzgrenze stoßen und der Bewegung des Flugzeuges nicht mehr folgen. Der Kurvenradius wird für die Rakete umso kleiner und unvorteilhafter, je näher sie dem Flugzeug gekommen ist. Timing ist somit ein wesentlicher Faktor bei Gegenmaßnahmen.
Ein klassisches Ausweichmanöver ist die Fassrolle (en). Hierbei bewegt sich das Flugzeug auf einer Kreisbahn um die Längsachse, wobei die Flugzeugunterseite immer nach außen zeigt. Die superponierte Bewegung ergibt eine Spiralbahn. Wird diese Bewegung mit einer im spitzen Winkel auf die Rakete zulaufenden Hauptbewegungsrichtung kombiniert, wird der Raketenleitrechner vor eine schwierige Aufgabe gestellt.
Liste von Luft-Luft-Lenkwaffen
ks = Kurzstrecke; ms = Mittelstrecke; ls = Langstrecke;
Aktuelle Modelle:
Historische Modelle:
- AIM-4 Falcon ks
- AIM-7 Sparrow ms
- AIM-26 Falcon
- AIM-47 Falcon
- AIM-54 Phoenix ls
- AIM-68 Big Q ks
- AIM-82 ks
- AIM-95 Agile ks
- AIM-97 Seekbat ls
- AIM-152 AAAM
- AIR-2 Genie ks
Aktuelle Modelle:
- BGT IRIS-T ks
- MBDA Meteor ms
- BAe AIM-132 ASRAAM ks
- BAe Skyflash ms
- MBDA MICA ms
- Alenia Aspide ms
- Matra R.550 Magic und Magic II ks
Historische Modelle:
- Fairey Firestreak ks
- Matra R.530 ks
- Matra Super 530 ms
- Hawker Siddeley Red Top ks
- Red Dean ks
- Saab 372
- Saab 373
Aktuelle Modelle:
- R-73 (AA-11 Archer) ks
- R-77 (AA-12 Adder) ms
- Wympel R-37 (AA-X-13 Arrow) ls
- Novator KS-172 AAM-L ls
- R-60 (AA-8 Aphid) ks
- R-27 (AA-10 Alamo) ms
- R-33 (AA-9 Amos) ls
Historische Modelle:
- Kaliningrad K-5 (AA-1 Alkali) ks
- R-3 (AA-2 Atoll) ks
- Kaliningrad K-8 (AA-3 Anab) ms
- Raduga K-9 (AA-4 Awl) ls
- Bisnowat R-4 (AA-5 Ash) ls
- Wympel R-40 (AA-6 Acrid) ks
- R-23/24 (AA-7 Apex) ks
Aktuelle Modelle:
Historische Modelle:
Aktuelle Modelle:
- Python 3 ks
- Python 4 ks
- Python 5 ms
- Derby ms
Historische Modelle:
- Shafrir ks
- Shafrir 2 ks
Aktuelle Modelle:
- Kentron V3 ks
- Denel LRAAM (S-Darter) ls
Historische Modelle:
- Kentron V1 ks
- Kentron V2 ks
- Kentron V4 R-Darter ls
Andere Staaten
- Tien Chien (Sky Sword I; Taiwan) ks
- Tien Chien II (Sky Sword II; Taiwan) ms
- AAM-3 (Japan) ks
- AAM-5 (Japan) ks
- AAM-4 (Japan) ms
- MAA-1 Piranha (Brasilien) ks
Literatur
- Jeremy Flack: Lenk- und Abwurfwaffen der NATO-Luftwaffen, Motorbuch Verlag, ISBN 3-613-02525-6
Siehe auch
Wikimedia Foundation.