- Salpeterschwefel
-
Ein Pyrotechnischer Satz ist ein Stoffgemisch zur Erzeugung akustischer, optischer, thermischer oder mechanischer Effekte. Er enthält mindestens ein Oxidationsmittel und einen Brennstoff. Pyrotechnische Sätze sind die chemischen Funktionsträger von pyrotechnischen Gegenständen. Als explosionsgefährliche Stoffe unterliegen sie entsprechenden rechtlichen Regelungen (Sprengstoffrecht, Pyrotechnikgesetz).
Inhaltsverzeichnis
Grundlagen
Ein Pyrotechnischer Satz ist ein Stoff oder Stoffgemisch (pyrotechnische Mischung), dessen Zweck darin besteht, eine akustische (Schall), optische (Licht, Nebel, Rauch), thermische (Wärme, Heizwirkung), oder mechanische (Druck, Bewegung) Wirkung zu entwickeln – der Gesetzgeber klassifiziert Substanzen und Objekte nicht nach ihren chemischen Eigenschaften, sondern inwiefern sie eine solche pyrotechnische Wirkung hervorrufen. Brennstoffe im allgemeinen Sinne etwa zählen nur dann zu den Pyrotechnika, wenn sie in einem Gegenstand explizit eingesetzt werden, um eine beabsichtigte pyrotechnische Wirkung (den pyrotechnischen Effekt) zu erzielen.
Wie bei allen energetischen Materialien ist auch beim pyrotechnischen Satz die exotherme Umsetzung (wie z. B. Abbrand, Deflagration) nicht an die Anwesenheit von Luftsauerstoff gebunden. Diese Umsetzung genannte Reaktion eines pyrotechnischen Satzes erfolgt spontan und selbstunterhaltend, aber langsamer (weniger brisant) als beim Sprengstoff – die Begriffe Deflagration (langsamer als die Schallgeschwindigkeit im Material) und Detonation (schneller) unterscheiden die Begriffe Pyrotechnikum und Sprengstoff.
Im Unterschied zu Sprengstoffen kann die Umsetzung nicht nur durch eine Explosion, sondern auch offene Flamme (Feuer), Hitze, Reibung, elektrostatische Aufladung, Funken, Schlag (Erschütterung) und bei manchen Sätzen auch Feuchtigkeit ausgelöst werden, und sie gelten darum – obwohl ihre Schadwirkung durch den langsameren Abbrand deutlich geringer ist – in der Handhabung als besonders gefährlich. Daher wird das Hantieren mit offenen pyrotechnischen Sätzen vermieden. Als Anzündmittel für kontrolliertes Auslösen des Abbrands (Anzünden) dienen Elektrozünder (elektrische Zündung) oder Reibeköpfe, Abreißzünder, Zündschnüre (Lunten), Anzündlitzen und anderes (pyrotechnische Anzündung bzw. Anfeuerung).
Aufbau einer pyrotechnischen Mischung
Oxidationsmittel
Wichtigste Komponente eines pyrotechnischen Satzes ist das Oxidationsmittel.
Typische Oxidationsmittel der Pyrotechnik sind:
- Nitrate (NO3-), Chlorate (ClO3-), Perchlorate (ClO4-), Peroxide (O22-), Dinitramide (N(NO2)2-), Chromate (CrO42-) und Permanganate (MnO4-) der Alkali- und Erdalkalimetalle
- Oxide der Metalle Wolfram (WO3), Molybdän (MoO3), Mangan (MnO2), Eisen (Fe3O4), Kupfer (Cu2O), Zink (ZnO2), Bismuth (Bi2O3), und Zinn (SnO2)
- Halogenkohlenwasserstoffen wie z. B. Hexachlorethan (C2Cl6), Hexachlorbenzol (C6Cl6), Polytetrafluorethylen ((C2F4)n), Graphitfluorid ((CF)n)
Weitere Oxidationsmittel sind Ammoniumnitrat, Ammoniumperchlorat und Ammoniumdinitramid. Diese zählen aber schon als Reinstoffe zu den explosionsfähigen bzw. explosionsgefährlichen Stoffen.
Während früher oftmals Chlorate als Oxidationsmittel in Leucht- und Pfeifsätzen verwendet wurden, setzt man heute die thermisch beständigeren und nicht ganz so reaktionsfreudigen, dafür aber sichereren Perchlorate ein. Lediglich bei wenigen Ausnahmen wie z. B. grünen Leuchtsternen hoher Farbreinheit kommt man an der Verwendung von Bariumchlorat nicht vorbei.
Voraussetzung für einen Elektronenakzeptor ist lediglich, daß der betreffende Brennstoff als Donor eine niedrigere Elektronegativität aufweist als der zur Wahl stehende Oxidator. Neben Sauerstoff-, Chlor- und Fluorabspaltenden Stoffen können auch Stoffe wie Bor, Kohlenstoff, Schwefel oder Phosphor in Kombination mit elektropositiveren Metallen als Oxidationsmittel fungieren, obschon sie alle selbst nach thermischer Anregung bereitwillig durch den elektronegativeren Sauerstoff lebhaft und unter Flammenerscheinung oxidiert werden.
Brennstoffe
Als Brennstoffe kommen in der Pyrotechnik praktisch alle brennbaren und leicht entzündlichen festen Stoffe zum Einsatz, beispielsweise Metalle, deren Legierungen und metallreiche Verbindungen wie z. B. Hydride, diverse Nichtmetalle und die umfangreiche Gruppe der organischen Verbindungen.
- Typische metallische Brennstoffe sind: Magnesium, Magnesium-Aluminium-Legierungen, Aluminium, Calciumsilicid, Titan, Zirconium, Eisen, Bor und Silicium
- Unter den Metallhydriden finden besonders Magnesiumdihydrid und Zirconiumhydrid Anwendung als Brennstoff.
- Weitere Brennstoffe sind z. B. Arsen(III)-sulfid (As2S3), Antimon(III)-sulfid (Sb2S3) und Bismut(III)-sulfid (Bi2S3).
- Unter den organischen Verbindungen besitzen die Derivate der aromatischer Carbonsäuren besondere Bedeutung (Benzoate, Phthalate, Trihydroxybenzol, Pikrate).
- In letzter Zeit gewinnen stickstoffreiche Verbindungen als Brennstoff in raucharmen und farbreinen Applikationen an Bedeutung. Hier spielen das Hexamethylentetramin, Guanidinnitrat, Nitroguanidin, Dicyandiamid, und viele Tetrazolate eine wichtige Rolle.
Hilfsstoffe
Weiterhin können pyrotechnische Sätze je nach ihrem Einsatzzweck noch eine oder mehrere der folgenden Komponenten enthalten:
- Abbrandmoderatoren wie z. B. Oxide der Übergangsmetalle
- Bindemittel wie z. B. natürliche Harze oder Gummi, Zucker, synthetische Polymere wie z. B. Polyacrylate, Polyolefine, Polyurethane usw.
- Phlegmatisierungsmittel wie z. B. Graphit, Wachse, Polytetrafluorethylen, Zinkstearat, usw.
- Flammenfärbende Zusätze wie z. B. Alkali- und Erdalkalimetallsalze oder Kupfer- und Molybdänsalze
- Friktionsmittel wie z. B. Seesand, Calciumsilicid, Glasmehl
- Aerosolbildner wie z. B. organische Farbstoffe, Roter Phosphor
Spezielle Anwendungen
Durch Variation der Zusammensetzung, Beimischen von Katalysatoren und den Abbrand moderierenden Zusätzen werden die Mischungen auf den jeweiligen Anwendungszweck optimiert. Dabei wird beispielsweise besonderen Wert gelegt auf große Wärmeentwicklung (Pyrolant), Gasentwicklung, Rauchentwicklung, eine konstante und stabile Abbrandgeschwindigkeit, zuverlässige Entzündbarkeit auch bei tiefer Temperatur, gute Lagerbeständigkeit, hohe Temperaturbeständigkeit oder die toxikologischen Eigenschaften der Verbrennungsgase.
- Schwarzpulver, Schwarzer Satz
- 75 % KNO3 + 10 % S + 15 % C
Salpeter (Kaliumnitrat), Schwefel (zusammen Salpeterschwefel) und Kohle – klassische pyrotechnische Mischung, wird heute kaum mehr verwendet. - Der Fundamentalsatz, Feuerwerksschwarzpulver oder Grauer Satz
- ist der am häufigsten verwendete pyrotechnische Satz in der Feuerwerkerei: ein Gemenge von 75 Teilen Salpeter, 18 Teilen Schwefel und 7 Teilen Kohle oder Mehlpulver
93,46 % S·KNO3 + 6,54 % C/Mehlpulver [1]
Es findet vor allem als Ausstoßladung und Zerlegerladung Verwendung.
Nach der Abbrandgeschwindigkeit, also der Geschwindigkeit der Umsetzung, und der daraus resultierenden Brisanz unterscheidet man in fauler Satz und rascher Satz [1]
Sätze können aber durchaus auch Sprengstoffcharakter haben. Das ungepresste und patronierte Pulver eines Luftheulers explodiert beispielsweise mit einem lauten Knall; während es im stark gepressten Originalzustand nur unter hellem Pfeifen abbrennt. (Dieser Effekt tritt nicht durch eine Pfeife o. Ä. auf, sondern basiert auf der Tatsache, dass das Gemisch schichtenweise – bis zu mehreren tausend Mal pro Sekunde – abbrennt, siehe Abschnitt Heulsatz.)
Einteilung der Sätze
Je nach Zusammensetzung und Anwendung unterscheidet man entsprechend:
- Normalsatz: Treibsatz, Ausstoßsatz, Trennsatz
- Anfeuerungssatz, Verzögerungssatz
- Effektsatz: Knallsatz, Leuchtsatz, Pfeifsatz, Sprühsatz, u.s.w.
- Nebelsatz, Rauchsatz
- Gassatz (Gasgeneratorsatz), Heizsatz, pyrotechnischer Satz für spezielle Effekte.
Normalsatz
Normalsätze sind die grundlegenden pyrotechnischen Sätze. Sie stellen die thermische, und damit die mechanische Energie zur Verfügung.
Treibsatz und Ausstoßsatz
Der Treibsatz (Propellant) dient der kontinuierlichen Schuberzeugung und brennt gleichmäßig ab [2]: Er ist als Treibladung in Raketen eingebaut; siehe etwa Treibsatz (Modellrakete)
Der pyrotechnische Satz bei Base-Bleed-Geschossen ähnelt einem Treibsatz, ist jedoch schwächer. Er dient nicht zur Schuberzeugung, sondern soll lediglich mit seinen Verbrennungsgasen den Unterdruck hinter dem fliegenden Geschoss "auffüllen", um den Luftwiderstand zu verringern und damit die Reichweite zu erhöhen.
Der Ausstoßsatz (Expellant) treibt den Gegenstand durch plötzliche Druckerzeugung aus einem Abschussrohr: Als Ausstoßladung beim Mörser (Geschütz), einer Bombette oder Bombe (Feuerwerk), oder auch, um militärische Raketen aus ihrer Halterung so weit in die Luft zu katapultieren, dass der eigentliche Treibsatz gefahrlos gezündet werden kann.
Trennsatz und Zerlegersatz
Trennsätze zerlegen den Gegenstand in einzelne Teile, um die gewünschten Effekte zur Geltung zu bringen.
Die Trennladung zerlegt zum Beispiel einen Feuerwerkseffekt im mehrere Teileffekte, die Zerlegerladung befördert die Effektladungen in einen gewünschten Abstand, den Effektradius. Sie bewirkt den eigentlichen, gemeinhin „Explosion“ genannten Effekt (etwa die typische Kugelgestalt einer Feuerwerksrakete).
Anfeuerungssatz
Er dient dazu, den Gegenstand anzuzünden, also die Reaktion in Gang zu bringen.
- 70 % KNO3 + 24 % B + 6 % PMMA
Kaliumnitrat, Bor, Polymethylmethacrylat – Sehr zuverlässige Anzündmischung; brennt auch bei 77 K (-196 °C) - 43 % KClO4 + 57 % Zr
Kaliumperchlorat und Zirconium, Kurzbezeichnung: ZPP – Pyrotechnische Zünder für Feststoffraketen (NASA). Dieser Zünder wird mit einem Laserpuls gezündet.
Dabei handelt es sich um Zündmittel wie die Zündschnur, einen Elektrozünder (Zündpille) oder eine Initialzündung.
Verzögerungssatz
Ein Verzögerer dient dazu, entweder den Start eines fliegenden Gegenstandes hinauszuzögern, nach Auslösen der Zündung einen Zeitabstand zu erzeugen (z. B. bei Sprengungen), oder nach dem Zünden des Ausstoß- oder Treibsatzes die Steigzeit zu überbrücken, damit der Effektsatz in gewünschter Effekthöhe zünden kann (wie beim Höhenfeuerwerk), oder um mehrere Effekte zu kuppeln, also mit einer gemeinsamen Zündung zu verbinden (etwa in Feuerwerksbatterien).
- 74 % Pb3O4 + 25 % Si + 1 % PMMA
Mennige, Silizium, Polymethylmethacrylat – Verzögerungssatz; brennt langsam mit definierter Geschwindigkeit ab.
Typische Verzögerungszeiten im Feuerwerk sind etwa 2 oder 3 Sekunden, bei Handgranaten 1,5 bis 4 Sekunden, bei Sprengzeitzündern in der Sprengtechnik 25 Millisekunden.
Effektsatz
Leuchtsatz, Farbsatz
Die charakteristischen Leucht- und Farbeffekte entstehen durch Zusatz von verschiedenen Stoffen zu den pyrotechnischen Sätzen:
- Rot: Strontiumsalze (dunkelrot), Calcium (orangerot), Lithium (karminrot)
- Gelb: Natriumsalze
- Grün: Bariumsalze (gelbgrün), Kupfer (smaragdgrün), Tellur (grasgrün), Thallium (wiesengrün), Zink (blassgrün)
- Blau: Kupfersalze (azurblau), Arsen, Blei, Selen (hellblau), Cobalt (tiefblau)
- Violett: Cäsium, Kalium
- Purpur: Rubidium
- Weiß, silberfarben: Magnesium, Aluminium, Titan, Zirconium
- Goldfarben: Eisen, Kohle
Die Farben entstehen durch Anregung von Atomen in der Hitze, welche sofort wieder in einen Zustand niedrigerer Energie zurückfallen, und die zuvor aufgenommene Energie dabei als Licht abstrahlen. Da die möglichen Energiedifferenzen quantenmechanisch genau festgelegt sind, haben Atome verschiedener Elemente – bedingt durch den Aufbau ihrer Elektronenhülle – unterschiedliche Emissionsfarben. Dabei gilt Kupfer als die schwierigste Farbe, da der Farbton auch von der vorliegenden Verbindung abhängt. Die meisten Kupferverbindungen färben jedoch grün, nur wenige, die aber bei hohen Temperaturen leicht zerfallen, färben tatsächlich blau.
Sehr heiß abbrennende Stoffe erhöhen die Leuchtkraft und die Intensität der Flamme. Um die Brillanz und die Farbintensität zu verstärken, werden den Sätzen verschiedene chlorhaltige Stoffe (z. B. PVC) beigemischt.
Es gibt auch noch andere Reaktionen die für das Leuchten eine Rolle spielen. So entstehen helle Funken durch Reaktionen, bei denen Metalle wie Magnesium, Aluminium, Titan und andere bei mehreren tausend Grad Celsius verbrennen. Goldene Funken – meist von Holzkohle oder Eisen erzeugt – verbrennen schon bei niedrigen Temperaturen von etwa 1500 Grad Celsius.
Typische Leuchteffektsätze sind Flittersatz („firefly“), Glittersatz, Blinksatz („strobe“), Funkensatz, Brilliantfeuersatz, Flammensatz (etwa bei Schweifeffekten), Doppel- oder Zwittersatz (Funken- und Flammsatz kombiniert), Sprühsatz (etwa bei der Wunderkerze). Diese Reaktionen sind teils äußerst komplex.
Blitzsatz und Knallsatz
Knallsätze dienen der Geräuscherzeugung.
- In Knallerbsen wird Silberfulminat, ein Salz der Knallsäure verwendet. In einer Knallerbse sind höchstens 2,5 mg enthalten, die mit einer kleinen Menge Quarzsand in Seidenpapier eingewickelt sind. Der Quarzsand verleiht der Knallerbse einerseits das notwendige Gewicht, zweitens löst er beim Auftreffen auf harte Unterlage durch Zerdrücken der Fulminatkristalle die Explosion aus. Der Stoff kann nicht in sehr großen Mengen hergestellt werden, da er auch am Eigengewicht der Kristalle zur Explosion gebracht werden kann. Auch geringe Reibung oder Erschütterung kann zur Explosion führen. Auch feuchtes Silberfulminat ist explosiv.
Knall- oder Knistersätze finden als Knallladung , oder Knatterladung, Knisterladung (Crackersatz) in entsprechenden Effekten Verwendung.
Mischungen aus Oxidatoren und Metallpulvern nennt man Blitzsätze (oder auch ggf. Blitzknallsatz (BKS), wenn sie primär zur Erzeugung eines Knalls bestimmt sind). Ein Blitzsatz explodiert mit einem hellen Lichtblitz – und einem lauten Knall – unter enormer Energieabgabe, wobei manche Blitzsätze auch in Detonation übergehen können. Eine weitere wesentliche Eigenschaft dieser Explosivstoffe ist es, ohne Verdämmung zu explodieren, was von der Art und der Zusammensetzung der Mischung abhängt. Diese Eigenschaft macht sie für die Pyrotechnik sehr interessant, da man mit geringen Mengen einen vielfach lauteren Knall erzeugen kann, als das mit Schwarzpulver möglich ist: Eine geringe Verdämmung des Pulvers reicht für einen „satten“ Knall, da der knallerzeugende Überdruck nicht durch bei der Reaktion entstehende Gase, sondern im Wesentlichen durch eine Erhitzung der Umluft erzeugt wird. So befindet sich in der einseitig offenen Papphülse eines Vogel- oder Starenschrecks nur eine Menge von 1,8 g BKS. Trotzdem kann eine solche in der Hand explodierende Patrone mehrere Finger abreißen.
Blitzknallsatz
- 60–75 % KClO4 + 25–40 % Al
Feuerwerk-Knallsatz; Unterwasser-Sprengstoff; explodiert mit lautem Knall
Das fast ausschließlich in der Pyrotechnik angewandte Gemisch besteht aus Kaliumperchlorat und sehr feinteiligem Aluminiumpulver. Bei diesem Satz muss das Aluminium als dunkles Aluminium (Aluminiumpyroschliff, dark aluminium, Dark Pyro Alu) vorliegen, welches das feinste der erhältlichen Aluminiumpulver ist. Die stöchiometrische Mischung liegt bei etwa 75 % Kaliumperchlorat und 25 % Aluminium.
Alternativ kommen auch Magnesiumpulver als Brennstoff, sowie diverse Nitrate und Chlorate als Oxidationsmittel zum Einsatz.
Er verbrennt mit extrem hoher Reaktionsgeschwindigkeit und kann ab Mengen von 100 bis 200 g nach Zündung von Deflagration zu Detonation übergehen. Er explodiert bereits in geringer Menge offen gezündet mit einem ohrenbetäubenden Knall, obwohl die Reaktions-Endprodukte (KCl und Al2O3) hochschmelzende Feststoffe sind. Diese Eigenschaft macht die Handhabung von Blitzknallsatz gefährlich, zumal das Gemisch empfindlich auf statische Aufladung reagiert. Zu finden ist diese Mischung in Knallkörpern von Alarmanlagen, Vogelschreckpatronen oder Salutbomben in der Großfeuerwerkerei, sowie in manchen Böllern.
Flashsatz
Ferner werden Flashmischungen aus Bariumnitrat, Schwefel und hochfeinem Aluminiumpulver in kleinen Bombetten als Zerlegerladung eingesetzt.
Feuerwerksartikel der Feuerwerksklasse 1 und 2 dürfen aufgrund ihrer Gefährlichkeit keine Blitzknallsätze enthalten. In anderen Ländern werden jedoch häufig Feuerwerksartikel mit Blitzpulver/Flashpulver verkauft. Zu nennen sind auch frei verkäufliche Knallkörper aus Österreich, der Schweiz, Frankreich und Belgien, die teilweise gar in Deutschland für den Export produziert wurden.
Pfeifsatz (Heulsatz)
Pfeifsätze (Heulsätze) enthalten meist Chlorate oder Perchlorate als Oxidationsmittel sowie Salze organischer Säuren (Salicylsäure, Benzoesäure). Die Geräuschentwicklung entsteht nicht durch Form der Austrittsöffnung, sondern durch oszillierend pulsierenden Abbrand mit etwa 3000–4000 Hz in offener Papphülse. Durch die vielen kurz nacheinander auftretenden Schallereignisse entsteht ein hoher Ton, den wir als Pfeifen charakterisieren.
Außer in Raketen finden Pfeifsätze Verwendung in Luftheulern.
Rechtliches
Der Umgang mit pyrotechnischen Sätzen und pyrotechnischen Gegenständen, dazu gehören das Herstellen, Bearbeiten, Verarbeiten, Verwenden, Verbringen, der Transport und das Überlassen innerhalb der Betriebsstätte, das Wiedergewinnen und Vernichten; der Verkehr (Handel) und die Einfuhr, werden aufgrund der möglichen Gefährdung gesetzlich streng geregelt.
- Zu detaillierten Informationen zu gesetzlichen Regelungen siehe: Pyrotechnik (Einteilung in Gefahrenklassen), Europäisches Übereinkommen über die internationale Beförderung gefährlicher Güter auf der Straße (Transport), Pyrotechniker (Berufsbild).
Verweise
Einzelnachweise
Literatur
- Herbert Ellern: Military and Civilian Pyrotechnics. Chemical Publishing Company, New York 1968
- John A. Conkling: The Chemistry of Pyrotechnics. Marcel Dekker, New York 1985
- Franz Sales Meyer: Die Feuerwerkerei als Liebhaberkunst. 1898. Reprint SurvivalPress, 2002, ISBN 383114012X
Glossare
- Markus Klatt: Feuerwerk Lexikon – auf technik.feuerwerk.net
- Solon Luigi Lutz: Pyrotechnische FAQ – auf www.pyro.de
- Fritz Sauer KG: Pyrotechnik Lexikon – folgt dem Werk von Franz Sales Meyer
Weblinks
- Pyrotechnik von Kay Busch
- Einführung in die Pyrotechnik
Wikimedia Foundation.