Lebesgue-Raum

Lebesgue-Raum

In der Mathematik sind Lp-Räume spezielle Banachräume, die aus Räumen sogenannter „p-fach integrierbarer“ Funktionen gebildet werden. Das L in der Bezeichnung geht auf den französischen Mathematiker Henri Léon Lebesgue zurück, da diese Räume über das Lebesgue-Integral definiert werden. Manchmal werden sie daher auch als Lebesgue-Räume bezeichnet. Im Fall Banachraum-wertiger Funktionen (wie im Folgenden für allgemeines E dargestellt) bezeichnet man sie auch als Bochner-Lebesgue-Räume. Das p in der Bezeichnung ist ein reeller Parameter: Für jede Zahl 0 < p \le \infty ist ein Lp-Raum definiert.

Inhaltsverzeichnis

Definition

Funktionenraum mit Halbnorm

Sei (\Omega, \mathcal A, \mu) ein Maßraum, E ein Banachraum mit der Norm \|\cdot\| und 0 < p < \infty. Dann ist die Menge

\mathcal{L}^p(\Omega, \mathcal A, \mu; E) := \left\{ f: \Omega \to E: f\, {\rm ist\ messbar}\,, \int_\Omega \|f(x)\|^p \,{\rm d}\mu(x) < \infty \right\},

wobei „messbar“ sich auf die borelsche σ-Algebra der Normtopologie von E bezieht, ein Vektorraum. Die Abbildung

 \|f\|_p := \left(\int_\Omega \|f(x)\|^p\,{\rm d}\mu(x)\right)^{1/p}

ist eine Halbnorm auf \mathcal{L}^p, wenn 1\le p. Die Dreiecksungleichung für diese Halbnorm wird Minkowski-Ungleichung genannt und mit Hilfe der Hölder-Ungleichung bewiesen. Nach dem rieszschen Vollständigkeitssatz ist der Raum, versehen mit dieser Halbnorm, vollständig.

\|\cdot\|_p ist genau dann eine Norm, wenn die einzige Nullmenge die leere Menge ist. Gibt es nämlich eine Nullmenge N\neq\emptyset, so ist die charakteristische Funktion 1N ungleich der Nullfunktion, aber es gilt \|1_N\|_p=0.

Faktorraum mit Norm

Um im Fall der Halbnorm einen normierten Raum zu erhalten, definieren wir den Unterraum \mathcal{N}^p:=\{f\in\mathcal{L}^p | f=0 ~ \mathrm{fast\ \ddot{u}berall}\}. Der Raum Lp ist dann definiert als der Faktorraum \mathcal{L}^p/\mathcal{N}^p. Zwei Elemente von [f], [g]\in L^p sind genau dann gleich, wenn f und g fast überall gleich sind.

Der Vektorraum Lp ist durch \|[f]\|_p:=\|f\|_p normiert. Die Normdefinition hängt nicht von dem Repräsentanten aus [f] ab, das heißt, für Funktionen f_1,f_2\in[f] in der gleichen Äquivalenzklasse gilt \|f_1\|_p=\|f_2\|_p. Das begründet sich damit, dass das Lebesgue-Integral invariant gegenüber Änderungen des Integranden auf Nullmengen ist. Der normierte Vektorraum Lp ist vollständig und damit ein Banachraum.

Auch wenn man von sogenannten Lp-Funktionen spricht, handelt es sich dabei um die gesamte Äquivalenzklasse einer klassischen Funktion. Allerdings liegen im Falle des Lebesgue-Maßes auf dem \mathbb{R}^n zwei verschiedene stetige Funktionen nie in der gleichen Äquivalenzklasse, so dass der Lp-Begriff eine natürliche Erweiterung des Begriffs stetiger Funktionen darstellt.

Sonderfall p = \infty

Auch für p = \infty kann man einen Lp-Raum, den Raum der wesentlich beschränkten Funktionen, definieren. Hierfür gibt es verschiedene Möglichkeiten, die aber für σ-endliche Maßräume alle zusammenfallen. Am verbreitetsten ist:

\mathcal{L}^\infty(\Omega, \mathcal A, \mu; E) := \left\{ f: \Omega \to E: f\, {\rm ist\,messbar }\,, \|f\|_\infty < \infty \right\};

dabei ist

 \|f\|_\infty := \operatorname{ess\,sup}_{x\in\Omega}|f(x)| \left( = \inf_{N\in \mathcal A\atop \mu(N) = 0}\sup_{x\in \Omega\setminus N} |f(x)|\right).

Betrachten wir analog zu oben L^\infty:=\mathcal{L}^\infty/\mathcal{N}^{\infty}, erhalten wir wieder einen Banachraum.

Beispiele

  • Ein sehr wichtiges Beispiel von Lp-Räumen ist durch einen Maßraum \Omega\subset\R^n gegeben, \mathcal{A} ist dann die borelsche σ-Algebra \mathcal{B}(\Omega), und μ das Lebesgue-Maß λ. Darüber hinaus wird E oft als die Menge \R der reellen Zahlen gewählt. In diesem Zusammenhang wird die kürzere Notation L^p(\Omega):=L^p(\Omega,\mathcal{B}(\Omega),\lambda;\R) benutzt.

Einige Autoren schreiben den Parameter p unten statt oben: Lp statt Lp.

E(X):=\int_\Omega X {\rm d}P\in E

definiert. Zufallsvariablen, die L1-Funktionen sind, besitzen also einen endlichen Erwartungswert. Da das für praktische Anwendungen immer gefordert ist, sind Lp-Räume gerade in der Stochastik sehr wichtig.

  • In einem weiteren wichtigen Fall sind Ω die natürlichen Zahlen und μ das normale Zählmaß. Hier ist der Lp-Raum der Raum aller Zahlenfolgen \left(a_n\right)_{n\in\N}, für die die Reihe \sum_{n=1}^\infty |a_n|^p konvergiert. Diese Räume werden auch oft mit \ell^p bezeichnet.

Wichtige Eigenschaften

  • Alle Lp-Räume für 1\le p \le \infty sind Banachräume.
  • Ist μ ein endliches Maß, gilt also \mu(\Omega)<\infty, so folgt beispielsweise aus der Ungleichung der verallgemeinerten Mittelwerte, dass L^q\subseteq L^p\; für q\geq p\geq 1\;. Für allgemeine Maße gilt für 1<p\leq q\leq r\leq\infty stets \mathcal{L}^q\supseteq\mathcal{L}^p\cap\mathcal{L}^r. Dies wird auch als "konvexe" oder "Hölder-Interpolation" bezeichnet.
  • Für 1 < p < \infty sind die Dualräume der Lp-Räume über reflexiven Banachräumen E wieder Lp-Räume. Konkret gilt:
L^p(\Omega,\mathcal A,\mu; E)^* \cong L^q(\Omega, \mathcal A, \mu; E^*),
worin q definiert ist über \frac{1}{p}+\frac{1}{q} =1 ; dabei ist der kanonische isometrische Isomorphismus gegeben durch
L^q(\Omega, \mathcal A, \mu; E^*)\to L^p(\Omega,\mathcal A, \mu; E)^*,\quad f \mapsto \left(g \mapsto \int_\Omega\! \langle g(\omega),f(\omega)\rangle_E\, {\rm d} \mu(\omega)\right).
Dabei steht \langle\cdot,\cdot\rangle für die kanonische Bilinearform auf E^*\times E, nämlich \langle\xi,x\rangle=\xi(x)
  • Daraus folgt, dass für 1< p < \infty und reflexives E die Lp-Räume reflexiv sind.
  • Für p = 1 und E = \mathbb K ist L^1(\Omega, \mathcal A, \mu)^* zu L^\infty(\Omega, \mathcal A, \mu) isomorph (der Isomorphismus analog zu oben), falls (\Omega, \mathcal A, \mu) σ-endlich ist. Ist (\Omega, \mathcal A, \mu) nicht σ-endlich, so lässt sich L^1(\Omega, \mathcal A, \mu)^* (wieder unter demselben Isomorphismus) als der Banachraum der lokal messbaren lokal im Wesentlichen beschränkten Funktionen darstellen.
  • Der Fall p = 2 ist ein Sonderfall: Der L2 ist, falls E ein Hilbertraum ist, sogar ein Hilbertraum (siehe unten).
  • Die Räume L1 und L^\infty sind nicht reflexiv.
  • Für  1 \leq p < \infty ist C_c^\infty(\Omega) dicht in Lp(Ω).

Verallgemeinerungen

Es gibt auch die Verallgemeinerung der Lp-Räume für 0 < p < 1. Diese sind allerdings keine Banachräume mehr, weil die entsprechende Definition keine Norm liefert, sondern nur eine Quasi-Norm. In diesem Fall ist jedoch

d_p(f,g) := \int_{\Omega} \|f(s)- g(s)\|^p \, {\rm d}s

eine translationsinvariante Metrik auf L^p(\Omega, \mathcal A, \mu; E), die diesen Raum zu einem vollständigen metrischen Vektorraum macht. Die Räume Lp([0,1]) sind ein Beispiel für einen nicht lokalkonvexen, topologischen Vektorraum.

Berücksichtigt man in der Norm nicht nur die Funktionswerte, sondern auch die schwachen Ableitungen, so erhält man Sobolew-Räume, die insbesondere in der Untersuchung von Differentialgleichungen eine wichtige Rolle spielen. Untersucht man statt den messbaren Funktionen nur die holomorphen beziehungsweise die harmonischen Funktionen auf Integrierbarkeit, so werden die entsprechenden Lp-Räume Hardy-Räume genannt.

Der Hilbertraum L2

Sei (\Omega, \mathcal A, \mu) ein Maßraum, (H, \langle\cdot,\cdot\rangle_H) ein Hilbertraum (häufig \mathbb C mit dem Skalarprodukt \langle w,z\rangle = \overline wz) und f,g\in L^2(\Omega, \mathcal{A}, \mu;H). Dann definiert

\langle f,g\rangle_{L^2(\Omega,\mathcal A, \mu; H)}:=\int_\Omega \langle f(x),g(x)\rangle_H\, {\rm d}\mu(x)

ein Skalarprodukt auf L2. Die von diesem Skalarprodukt induzierte Norm ist ganz offensichtlich die oben definierte L2-Norm, das heißt, dieser Raum ist bezüglich der durch das Skalarprodukt induzierten Norm vollständig und damit selbst wieder ein Hilbertraum.

Literatur

  • Herbert Amann, Joachim Escher: Analysis III. 1. Auflage. Birkhäuser-Verlag Basel Boston Berlin, 2001

Wikimedia Foundation.

Игры ⚽ Поможем сделать НИР

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Lebesgue-Räume — In der Mathematik sind Lp Räume spezielle Banachräume, die aus Räumen sogenannter „p fach integrierbarer“ Funktionen gebildet werden. Das L in der Bezeichnung geht auf den französischen Mathematiker Henri Léon Lebesgue zurück, da diese Räume über …   Deutsch Wikipedia

  • Lebesgue-Integral — Illustration der Grenzwertbildung beim Riemann Integral (blau) und beim Lebesgue Integral (rot) Das Lebesgue Integral (nach Henri Léon Lebesgue) ist der Integralbegriff der modernen Mathematik, der die Berechnung von Integralen in beliebigen… …   Deutsch Wikipedia

  • Lebesgue-integrierbar — Das Lebesgue Integral (nach Henri Léon Lebesgue) ist der Integralbegriff der modernen Mathematik, der die Berechnung von Integralen in beliebigen Maßräumen ermöglicht. Im Fall der reellen Zahlen mit dem Lebesgue Maß stellt das Lebesgue Integral… …   Deutsch Wikipedia

  • Lebesgue'sche Überdeckungsdimension — Die Lebegue’sche Überdeckungsdimension (nach Henri Léon Lebesgue) ist eine geometrisch sehr anschauliche, topologische Charakterisierung der Dimension. Inhaltsverzeichnis 1 Definition 2 Erläuterung 3 Beispiele 3.1 Einfache Beispiele …   Deutsch Wikipedia

  • Lebesgue’sche Überdeckungsdimension — Die Lebegue’sche Überdeckungsdimension (nach Henri Léon Lebesgue) ist eine geometrisch sehr anschauliche, topologische Charakterisierung der Dimension. Inhaltsverzeichnis 1 Definition 2 Erläuterung 3 Beispiele …   Deutsch Wikipedia

  • Lebesgue-Maß — Das Lebesgue Maß [ləˈbɛg] (nach Henri Léon Lebesgue) ist das Maß im euklidischen Raum, das geometrischen Objekten ihren Inhalt (Länge, Flächeninhalt, Volumen, …) zuordnet. Inhaltsverzeichnis 1 Hintergrund 2 Definition 3 …   Deutsch Wikipedia

  • Sobolev-Raum — Ein Sobolev Raum auch Sobolew Raum (nach Sergei Lwowitsch Sobolew, in englischer Transkription Sobolev) ist in der Mathematik ein Funktionenraum von schwach differenzierbaren Funktionen, der zugleich ein Banachraum ist. Das Konzept wurde durch… …   Deutsch Wikipedia

  • Lp-Raum — In der Mathematik sind Lp Räume spezielle Banachräume, die aus Räumen sogenannter „p fach integrierbarer“ Funktionen gebildet werden. Das L in der Bezeichnung geht auf den französischen Mathematiker Henri Léon Lebesgue zurück, da diese Räume über …   Deutsch Wikipedia

  • Messbarer Raum — Die Maßtheorie ist ein Teilgebiet der Mathematik, das die elementargeometrischen Begriffe Streckenlänge, Flächeninhalt, Volumen verallgemeinert und es dadurch ermöglicht, auch komplizierteren Mengen ein Maß zuzuordnen. Sie bildet das Fundament… …   Deutsch Wikipedia

  • Borel-Raum — Die borelsche σ Algebra ist ein Begriff aus der Mathematik, der ein Scharnier zwischen den Zweigen Topologie und Maßtheorie bildet. Jeder Topologie lässt sich in eindeutiger Weise eine σ Algebra zuordnen, die man die zugehörige borelsche σ… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”