- Heterodynempfänger
-
Der Überlagerungsempfänger (auch Superheterodynempfänger bzw. kurz Superhet, Super) ist eine elektrische Schaltung zum Empfang und zur Verarbeitung von hochfrequenten elektromagnetischen Signalen (HF-Signalen). Eingesetzt wird sie in vielen Geräten der Funkübertragung, der Telekommunikation und der HF-Messtechnik, vom einfachen Radio über das Mobiltelefon und Fernsehen, die Funkfernsteuerung bis hin zu modernen Satelliten.
Grundlagen
Im Gegensatz zum Geradeausempfänger wird im Überlagerungsempfänger die Frequenz des HF-Signals mindestens einmal geändert, bevor es demoduliert wird. Dazu wird es mit dem Signal eines sich im Empfänger befindenden sogenannten Lokaloszillators (LO-Signal) gemischt, um eine feste, meist tiefere Zwischenfrequenz mit dem gleichen Modulationsinhalt wie das HF-Signal zu erhalten. Die Frequenz des Lokaloszillators bestimmt zusammen mit der Zwischenfrequenz die Empfangsfrequenz.
Durch den Überlagerungsempfang wird die notwendige Verstärkung und Filterung des Signals erleichtert. Die Signalfilterung erfolgt auf einer konstanten und meist niedrigeren ZF, deshalb kann – im Gegensatz zu dem beim Geradeausempfänger benötigten abstimmbaren HF-Filter – auf Festfrequenzfilter zurückgegriffen werden. Das ergibt einen vereinfachten Aufbau und deutlich höhere Trennschärfe (Selektion), wodurch sich eine wesentlich verbesserte Empfangsqualität ergibt.
Man unterscheidet zwei Empfangsprinzipien für Überlagerungsempfänger, nämlich das Homodyn- und das Heterodynverfahren. Beim Heterodynverfahren wird eine LO-Frequenz benutzt, die sich um einige 100 kHz (nämlich um den Betrag der ZF) von der HF unterscheidet, beim Homodynverfahren hingegen haben LO- und HF-Signal die gleiche Frequenz. Beim Homodynverfahren wird das amplitudenmodulierte Empfangssignal direkt (ohne ZF) auf den NF-Bereich umgesetzt, es handelt sich um einen Direktempfänger oder Direktmischer.
Geschichte
Der Name Heterodyn beziehungsweise Superheterodyn ist eine Wortneubildung, zusammengesetzt aus dem lateinischen Wort super = „über“ sowie den griechischen Wörtern hetero = „verschieden“ und dynamis = „Kraft“, und beschreibt die Mischung von zwei Signalen unterschiedlicher Frequenz. Im Gegensatz dazu wird für den Namen des Homodyn-Empfängers das griechische Wort homόs = „gleich“ verwendet. Der Ausdruck Lokaloszillator bedeutet, dass sich dieser Oszillator am Ort (lat. locus = Ort), also im Überlagerungsempfänger selbst befindet. Superhet oder einfach nur Super sind bei Funkamateuren gebräuchliche Kurzformen für Überlagerungsempfänger nach dem Heterodynprinzip.
Wer der Erfinder des Überlagerungsempfängers ist, lässt sich nicht eindeutig sagen. Dass die Erfindung in die Zeit des Ersten Weltkriegs fällt und alle beteiligten Kriegsparteien an der Verbesserung der Radiotechnik arbeiteten, mag daran einen Anteil haben. Die englischsprachige Wikipedia[1] nennt Edwin Armstrong als Erfinder des Superheterodynempfängers (engl. Super heterodyne receiver), für den er 1918 ein Patent erhalten hat.
Andere Quellen [2] geben an, dass Armstrong im Jahr 1918 die Idee dazu hatte, als er in Frankreich stationiert war. Das US-Patent Nr. 1.342.885[3] von Edwin Armstrong beschreibt das Überlagerungsprinzip. Armstrong hat dieses Patent Anfang 1919 in den USA angemeldet und Mitte 1920 erhalten.
Fast gleichzeitig sollen aber auch Lucien Lévy (1917) in Frankreich sowie Walter Schottky (1918) in Deutschland dieses Funktionsprinzip entwickelt haben. Lucien Lévy erhielt 1919 und 1920 in Frankreich ein Patent (Nr. 493.660 und Nr. 506.297) für seinen Schaltungsentwurf, der mit einer Zwischenfrequenz (ZF) arbeitete.
Einer der ersten kommerziell gebauten Superhets war der Radiola AR-812[4] von RCA, der von 1924 bis etwa 1927 über 140.000 Mal verkauft wurde. Die deutsche Firma DeTeWe entwickelte in den Jahren 1924/1925 den „Ultradyn“. In Frankreich sollen im Jahr 1923 drei Heimempfänger von Lucien Lévys Firma „Radio L.L“ produziert worden sein.
In den folgenden Jahrzehnten setzte sich das Schaltungsprinzip wegen seiner vielen Vorteile immer mehr durch. Es wurden viele Varianten von Überlagerungsempfängern entwickelt und gebaut, manche mit Doppel- und Mehrfachüberlagerung (bis zu vierfach) und Mischung mit konstanter statt variabler Mischfrequenz, sogenannte Konverter wie z. B. der LNB in der Satellitentechnik.
Die Überlagerung ist ein universelles Verfahren und wird auch in Sendern eingesetzt. Praktisch alle heute auf dem Markt verfügbaren drahtlosen Sende- und Empfangsgeräte arbeiten nach dem Überlagerungsprinzip (Radio, Funksprechgerät, Mobiltelefon, Basisstation, Relais, Fernsehen, Satelliten).
Funktionsprinzip
Das Antennensignal wird in der Hochfrequenz-Verstärkerstufe vorselektiert und verstärkt. Es gelangt zur Mischstufe und wird dort mit dem Signal des Abstimmoszillators fLO gemischt, wobei eine Reihe neuer Frequenzen erzeugt wird. Darin sind – je nach Qualität des Mischers – neben den Originalfrequenzen unter anderem die Summe und die Differenz der Eingangs- und der Oszillatorfrequenz enthalten. Bei einem exakt (multiplizierend) arbeitenden, symmetrischen Mischer gäbe es nur die Summen- und Differenzfrequenzen. In der Regel ist die Differenzfrequenz dasjenige Signal, das durch die folgenden ZF-Stufen herausgefiltert und verstärkt wird (es gibt aber, vor allem bei Amateurfunkern, Ausnahmen).
Das ZF-Filter lässt ein schmales Frequenzband um seine Mittenfrequenz herum fast ungehindert passieren, alle anderen Frequenzen werden stark gedämpft. Fallen bei Verwendung eines schlechteren Mischers unerwünschte Kombinationsfrequenzen in den ZF-Bereich, werden diese wie das gewünschte Signal weiter behandelt. Der Zwischenfrequenzverstärker verstärkt das gefilterte Frequenzgemisch für die weitere Verarbeitung, anschließend folgt der Demodulator. Dort wird aus der ZF wieder das Nutzsignal (z. B. Audio beim Radioempfang) gewonnen und dem folgenden Niederfrequenz-Verstärker übergeben.
Schaltungsstufen im Detail
Verwendete Abkürzungen:
- fe = Durchlassfrequenzbereich der Vorselektion
- fE = Gewünschte Empfangsfrequenz
- fZF = Zwischenfrequenz
- fOsz = Abstimmfrequenz
- fDif = Differenzfrequenz(en)
- fSum = Summenfrequenz(en)
HF-Verstärker/Vorselektion
Der Hochfrequenz-Verstärker hat mehrere Funktionen:
- Er passt die Impedanz der Antenne an die nachfolgende Schaltung an (es soll ein Maximum der von der Antenne aufgenommenen Leistung an die nachfolgende Stufe weitergegeben werden).
- Er verstärkt die schwachen Antennensignale, damit diese über dem Eigenrauschen des Mischers liegen. Dadurch wird die Eingangsempfindlichkeit des Empfängers gesteigert.
- Er verhindert, dass die LO-Frequenz vom Mischer an die Antenne gelangt und dort abgestrahlt wird (Störsender).
- In dieser Stufe wird eine Vorselektion vorgenommen, damit nur Frequenzen aus dem Empfangsbereich (Durchlassbereich fe) den Verstärker passieren können. Dabei ist der Durchlassbereich meist an die Abstimmfrequenz gekoppelt, so dass bei einer Änderung der Frequenz des Abstimmoszillators auch der Frequenzbereich fe, der die Vorselektion passieren darf, mitgeändert wird (Genaueres ist unter Die Abstimmung zu finden). Das Begrenzen des Empfangsbereichs ist ein wesentlicher Punkt, um Spiegelfrequenzen zu unterdrücken.
Mischer
Der Überlagerungsempfänger verwendet einen speziellen Mischer. Im Mischer wird der Eingangsfrequenzbereich (fe) auf einen anderen Frequenzbereich (meist einen niedrigeren) umgesetzt, indem fe mit der Frequenz des Abstimmoszillators fOsz gemischt wird. Dabei werden die Augenblickswerte der Signale vom Abstimmoszillator mit den Augenblickswerten der Eingangsfrequenzen multipliziert. Mit einem idealen Multiplizierer erhält man am Ausgang nur zwei neue Seitenbänder mit Signalen, die auf den Differenzfrequenzen von Abstimmoszillator und Eingangsfrequenzen liegen (fDif = | fOsz − fe | ) und mit Signalen auf der Summe von Abstimmfrequenz plus Eingangsfrequenzen (fSum = | fOsz + fe | ).
Beim Überlagerungsempfänger wird die Differenzfrequenz genutzt, Standardfrequenzen sind 455 kHz für Langwelle, Mittelwelle und Kurzwelle und 10,7 MHz für Ultrakurzwelle. Die Oszillatorfrequenz kann von einer eigenständigen Oszillatorschaltung stammen, aber auch vom Mischer selbst generiert werden (selbstschwingende Mischstufe).
Die mathematische Ableitung des idealen Mischers ist im Mathematischen Anhang zu finden.
In diesen neuen Frequenzbereichen sind nach wie vor noch die Informationen (Modulation) der Empfangsfrequenzen enthalten. Das Eingangssignal wurde nur auf zwei andere Frequenzbereiche umgesetzt.
Mit der (preiswerten) Verfügbarkeit von Mehrgitterröhren und später von Dual-Gate-Feldeffekttransistoren verbreitete sich die multiplikative Mischung. Hier werden die beiden Spannungen jeweils auf einen eigenen Eingang des Steuerelements, wie zum Beispiel die beiden Gates eines Dual-Gate Feldeffekttransistors oder die Steuergitter einer Vakuumröhre, geführt. Das Ausgangssignal wird von beiden Eingangssignalen gesteuert, was einer Multiplikation der beiden Steuersignale gleichkommt. Bei höheren Frequenzen (im höheren GHz-Bereich) wird häufig – und heute (2006) noch – ein Dioden-Ring-Mischer verwendet.
Die multiplikative Mischung bietet einige schaltungstechnische Vorteile gegenüber der additiven Mischung, so sind die Rückwirkungen auf den HF-Verstärker geringer und es besteht die Möglichkeit einer zusätzlichen Regelung der Mischstufe. Daneben produziert er weitaus weniger Anteile in der Nähe der Empfangsfrequenz (fe) und der LO-Frequenz (fLO). Das erleichtert die Filterung von unerwünschten Anteilen im Signal und wird in der nachfolgenden Tabelle noch einmal zusammengefasst.
Vor- und Nachteile der additiven Mischung
- Vorteile:
- Der Mischtransistor lässt sich als Oszillator mitbenutzen (selbstschwingende Mischstufe)
- Nachteile:
- Ohne Brückenschaltung sind Oszillatorfrequenz und Eingangsfrequenz kaum zu entkoppeln
- Erzeugt viele unerwünschte Mischprodukte
Vor- und Nachteile der multiplikativen Mischung
- Vorteile:
- Erzeugt weniger unerwünschte Mischprodukte
- Die Oszillator- und die Eingangsfrequenz sind entkoppelt
- Eine Regelung der Mischverstärkung ist möglich
- Nachteile:
- Es ist in der Transistortechnik keine selbstschwingende Mischstufe möglich, während dies in der Röhrentechnik zum Beispiel mit einer Oktode durchaus so realisiert wurde.
Abstimmoszillator
Der Abstimmoszillator hat die Aufgabe eine möglichst konstante Spannung mit der gewünschten Frequenz fOsz mit hoher Genauigkeit zu erzeugen. Diese Frequenz muss in einem weiten Bereich einstellbar sein, damit auf jeden gewünschten Sender innerhalb des Empfangsbereichs abgestimmt werden kann. Es gibt verschiedene Oszillatorschaltungen, die für diesen Zweck geeignet sind. Eingesetzt werden in der Regel LC-Schwingkreise, um ein sinusförmiges Oszillatorsignal zu erhalten, wenn es um die Abstimmung über einen nicht gerasterten Bereich geht. Ist allerdings das Raster klar vorgegeben (z. B. UKW mit 25 kHz) oder CB-Funk, dann sind LC-Oszillatoren eine schlechte Wahl und PLL-Oszillatoren treten an ihre Stelle – sie sind weitaus genauer und billiger, s. u.
Vom Abstimmoszillator hängt ganz wesentlich die Frequenzstabilität (das bedeutet, dass ein Sender über einen längeren Zeitraum empfangen werden kann, ohne die Abstimmung manuell nachregeln zu müssen) und die Eindeutigkeit der Skala (gleiche Skalenstellung des Frequenzzeigers soll gleiche Empfangsfrequenz liefern) ab.
Mit einem HF-Synthesizer und einer automatischen Frequenznachführung (AFC) kann eine Unabhängigkeit von Temperatur- und Alterungseinflüssen erreicht werden. (Siehe VFO, VCO, PLL und DDS).
Beim Einsatz eines analogen Abstimmoszillators kann jede beliebige Frequenz innerhalb des Empfangsbereichs am Empfänger eingestellt werden. Mit digital abgestimmten Oszillatoren kann die Eingangsfrequenz nur mit einer bestimmten Schrittweite eingestellt werden. Bei einfachen Kurzwellengeräten etwa liegen diese meist bei 100 Hz oder 1 kHz. Hochwertige DDS-gesteuerte Geräte bieten mittlerweile aber Abstimmschritte von 0,1 Hz, so dass man bei manueller Abstimmung praktisch keinen Unterschied mehr zur analogen Abstimmung wahrnehmen kann.
Für Rundfunkbänder mit festgelegtem Kanalraster (UKW, TV) sind derart feine Schrittweiten nicht notwendig. Da sich jedoch nicht alle Sender an die Norm halten, werden gute UKW-Empfänger mit einer Schrittweite im halben Kanalraster hergestellt (den oben erwähnten 25 kHz).
Zwischenfrequenz-Filter
Der ZF-Filter ist für einen festen Frequenzbereich ausgelegt. Als Bandpass soll es Signale außerhalb dieses Frequenzbereichs aussperren und die Frequenzen innerhalb möglichst ungehindert und unverändert durchlassen. Dadurch werden aus den angebotenen Frequenzen fDif und fSum vom Mischer nur die gewünschten Frequenzen um fZF an den ZF-Verstärker weitergeleitet. Das ZF-Filter hat damit einen maßgeblichen Anteil an der Trennschärfe und der Nahselektion des Empfängers. Je nach Frequenzband und Betriebsart werden ZF-Filter mit unterschiedlichen Bandbreiten benötigt.
Spulenfilter wurden schon in der Frühzeit der Funk- und Rundfunktechnik (siehe Geschichte des Hörfunks) verwendet. Extrem schmalbandige Filter findet man bei den mechanischen Filtern und Quarzfiltern. Keramische Filter (Keramikschwinger) sind den Quarzfiltern in ihren Eigenschaften unterlegen, werden aber oft in Konsumergeräten wegen ihres günstigeren Preises benutzt.
Übliche Werte für die ZF-Frequenz sind 10,7 MHz für FM-Empfänger (UKW-Rundfunk) und 455 kHz für AM-Empfänger (Lang-, Mittel- und Kurzwelle), 38,9 MHz für TV-Empfänger (Analog, Bild-ZF) und 33,4 MHz sowie 33,158 MHz für die TV-Tonkanäle (FM, Stereo). Diese Werte sind zwar nicht genormt, aber weltweit verbreitet.
Zwischenfrequenz-Verstärker
Der ZF-Verstärker verstärkt und begrenzt (bei Frequenzmodulation (FM)) das Signal. Die Begrenzung ist bei FM notwendig, da sich Amplitudenänderungen, hervorgerufen durch Störungen auf dem Übertragungsweg, negativ auf die Empfangsqualität auswirken können. Möglich ist eine Amplitudenbegrenzung, weil bei der Frequenzmodulation, im Gegensatz zur Amplitudenmodulation, keine Informationen in der Amplitude übertragen werden.
Die Verstärkerstufen im ZF-Verstärker sind regelbar, sie müssen in der Lage sein, einen großen Dynamikumfang zu verarbeiten, um mit schwachen und mit sehr starken Signalen zurecht zu kommen.
Es sind einige Empfänger auf dem Markt, die eine der ZF-Stufen (meist die niederfrequenteste) durch Digitaltechnik ergänzen oder ganz ersetzen. Die analogen Signale, die der ZF-Stufe zugeführt werden, werden dafür in Echtzeit in digitale Signale umgewandelt (siehe Analog-Digital-Umsetzer) und dann von einem Signalprozessor weiterverarbeitet. Das hat den Vorteil, dass viele in Hardware nur schwer oder überhaupt nicht verwirklichbare Funktionen in Software realisiert werden können. Dazu gehören unter anderem hochwertige, in der Bandbreite variable ZF-Filter oder Kerbfilter (engl. notch filter) die automatisch der Störfrequenz folgen, um nur einige Anwendungen zu nennen.
Demodulator
Im Demodulator wird der Nachrichteninhalt wieder von dem hochfrequenten Träger getrennt. Die Demodulatorschaltungen unterscheiden sich je nach zu demodulierender Betriebsart.
Amplitudenmodulation (AM)
Bei der Amplitudenmodulation ist schon eine Diode und ein RC-Glied für die Rückgewinnung des Nutzsignals ausreichend (siehe Hüllkurvendetektor und Tiefpass).
Im Bild rechts dient der parallele Kondensator zur Festlegung der oberen Grenzfrequenz des demodulierten Signals bzw. zur Unterdrückung der ZF. Der Parallelwiderstand legt die untere Grenzfrequenz des demodulierten Signals fest und dient zur Stabilisierung des Arbeitspunktes der Diode. Der Koppelkondensator (rechts) trennt die am Demodulator entstehende Gleichspannung vom folgenden Verstärker.
Bei Betriebsarten mit unterdrücktem Träger, wie SSB, wird im Demodulator – zum Beispiel ein Ringmodulator – mit einem BFO (Beat Frequency Oszillator) der Träger wieder dazugemischt. Die Steuersignale für die automatische Verstärkungsregelung (AGC) und die automatische Frequenzregelung (AFC) werden im Demodulator aus der demodulierten Spannung gewonnen.
Frequenzmodulation (FM)
Die Demodulation ist bei frequenzmodulierten Signalen komplizierter als bei AM. Meist verwendet wird der Phasendemodulator, da sich dieser sehr gut in ICs integrieren lässt. Dabei wird ein Schwingkreis (Keramikschwinger oder LC-Schwingkreis) lose mit der ZF gekoppelt und dessen Phasenlage ausgewertet: stimmen Resonanzfrequenz und ZF überein, ist diese 90°, bei kleinerer ZF sinkt der Phasenwinkel, bei größerer steigt er. Andere Schaltungen sind PLL-Diskriminator und Verhältnisdiskriminator oder Ratiodetektor.
NF-Verstärker
Der NF-Verstärker hebt die demodulierten Signale wieder so weit an, dass damit ein Lautsprecher, Kopfhörer oder externer Verstärker (Hifi-Komponente) angesteuert werden kann. (Anmerkung: Traditionellerweise war bei einem Radio der Anschluss für den Verstärker an der Demodulatordiode angeschlossen; daher die Namen „Dioden-Stecker“, „-Kabel“ oder „-Buchse“ für die entsprechenden Anschluss-Komponenten.) Der NF-Verstärker kann die Klangeigenschaften beeinflussen, wie beispielsweise das Anheben oder Absenken der Höhen und Tiefen.
Automatische Verstärkungsregelung
Die automatische Verstärkungsregelung, im deutschen mit AVR abgekürzt (engl. automatic gain control, AGC), gleicht Schwankungen der Empfangsfeldstärke aus. Dazu wird die Regelspannung, die aus dem Demodulator gewonnen wird, den HF-/ZF-Stufen (Rückwärtsregelung) oder dem NF-Verstärker (Vorwärtsregelung) zugeführt. Dort wird dann die Verstärkung der Stufe entsprechend erhöht oder verringert. Dadurch ist es möglich, schwache und starke Sender in gleicher Lautstärke wiederzugeben oder den Schwund beim Kurzwellenempfang auszugleichen.
Automatische Frequenzregelung
Die automatische Frequenzregelung, im deutschen mit AFR abgekürzt (engl. automatic frequency control, AFC), gleicht Schwankungen der Empfangsfrequenz aus.
Betrachtung der bisher besprochenen Stufen an einem Schaltplan
Der im Bild zu sehende UKW-Tuner besitzt einen regelbaren HF-Verstärker (gelb), eine multiplikative Mischstufe (grün) und einen VCO (rot). Der Tuner ist mit Dual-Gate-FETs ausgestattet, die sich durch einen hohen Eingangswiderstand und ein geringes Eigenrauschen auszeichnen.
HF-Verstärker/Vorselektion:
- Der Antenneneingang ist unsymmetrisch für 75-Ohm-Koaxialkabel. Die Antenne wird induktiv über L1/L2 an die HF-Verstärkerstufe angekoppelt (Leistungsanpassung). L1 und L2 haben die Aufgabe, die Antenne an die HF-Verstärkerstufe anzupassen. L2, C2, C3, D1, D2 bilden den ersten Vorkreis (Parallelschwingkreis), dort wird die gewünschte Eingangsfrequenz selektiert. Der Vorkreis wird über D1, D2 abgestimmt. Die Abstimmspannung kommt über den Vorwiderstand R8 an die Kapazitätsdioden. C3 dient zum Abgleich des ersten Vorkreises (ist für den Hersteller oder Servicetechniker gedacht).
- Die vorselektierte Eingangsfrequenz gelangt über C4 an das Gate 2 (G2) von Q1. Dieser verstärkt die Eingangsfrequenz. Die Regelung der Verstärkung (hier Rückwärtsregelung) erfolgt dabei über das Gate 1 (G1). Die Regelspannung wird über den Spannungsteiler R5/R6 dem G1 zugeführt. C7 dient zur Abblockung von HF-Störungen auf der Regelspannung. Die verstärkte Eingangsfrequenz gelangt nun über die Drain von Q1 an den nächsten Vorkreis L3/L4. HF-Verstärker und Mischstufe sind durch L3/L4 induktiv gekoppelt. C9, C10, D3, D4 bilden hier einen Parallelschwingkreis. Dieser Vorkreis wird über D3, D4 abgestimmt.
Mulitiplikativer Mischer und erstes ZF-Filter:
- Die Eingangsfrequenz gelangt über eine Anzapfung (induktiver Spannungsteiler) von L4 über C11 an G2 von Q2. Q2 mischt aus der Eingangsfrequenz und der Oszillatorfrequenz, welche über C23 an G1 kommt, die ZF. Über die Drain von Q2 kommt die ZF über R16 an das erste ZF-Filter, welches durch T1, C14, C18 gebildet wird. Der ZF-Filter ist abgleichbar.
Abstimmoszillator (VCO):
- Der Transistor Q3 des Oszillators arbeitet in Basisschaltung. Die Betriebsspannung gelangt über R25, L5, R23 an den Kollektor des Transistors. C26, C25 dienen zur Abblockung der Betriebsspannung und sind für den Oszillatorkreis L5, C24, D6, D7 nicht frequenzbestimmend, da sie bei dieser Frequenz nur einen Kurzschluss darstellen (C26 = C25 = 560 pF). C22 bewirkt eine Mitkopplung (Positive Rückkopplung), damit der Oszillator schwingt. C22 und C20 erfüllen die Phasenbedingung von 0° bei Oszillatoren.
- R26, R21, D5 bilden den Basisspannungsteiler, wobei D5 der Temperaturkompensation dient. Dies ist notwendig damit der Oszillator bei Temperaturänderungen stabil arbeitet.
C19 beseitigt HF-Störungen auf der Betriebsspannung. Das gleiche gilt für C16, C17 bei der Abstimmspannung. Der Eingang AFC geht zum AFC-Schalter. D8, C28, C27 sind zuständig für die AFC. Wobei D8 den Oszillator um einige ppm nachstimmt.
Die Abstimmung
Wie bei der Erklärung des Abstimmoszillators schon erwähnt, lässt sich dessen Frequenz vom Anwender einstellen. Die Frequenz des Abstimmoszillators fOsz liegt immer um den Betrag der ZF-Frequenz fZF höher oder tiefer als die gewünschte Empfangsfrequenz fE.
- Bei Aufwärtsmischung : fE = fOsz − fZF
- Bei Abwärtsmischung : fE = fOsz + fZF
Wenn bei fZF = 455kHz der Frequenzbereich fe von 800 bis 1200 kHz gewünscht wird, muss fOsz auf 1455 kHz eingestellt werden. Dann sind am Ausgang des Mischers diese Frequenzen und deren Summen und Differenzen vorhanden. Der ZF-Filter lässt aber nur 455 kHz durch. Die einzige Frequenz aus dem Bereich von fe, die diese Bedingung erfüllen kann, ist die Empfangsfrequenz 1000 kHz. Eine Addition der Eingangsfrequenz mit der Abstimmfrequenz ist immer 2255 kHz; es bleibt also nur die Differenz, | fE − fOsz | = | 1000 kHz - 1455 kHz | = 455 kHz.
In der Praxis wird nicht nur diese einzelne Frequenz das Filter passieren, sondern, bedingt durch die Bandbreite des ZF-Filters von zum Beispiel 10 kHz (d. h. das Filter lässt Frequenzen zwischen etwa 450 und 460 kHz durch), alle Empfangsfrequenzen, die zwischen 995 und 1005 KHz liegen.
Beim obigen Beispiel wurde als fe nur 800 bis 1200 kHz zugelassen. Lässt man einen größeren Frequenzbereich zu, so zeigt sich ein Nachteil des Superhet und die Notwendigkeit, im HF-Vorverstärker (bzw. vor dem Mischer) die Empfangsbandbreite mittels Vorselektion zu beschränken.
Könnten noch höhere Empfangsfrequenzen an den Mischer gelangen, dann gäbe es noch eine Differenzfrequenz fDiv aus fe und fOsz, die 455 kHz ergibt:
- fe - fOsz = 1910 kHz - 1455 kHz = 455 kHz
Zusätzlich zu der gewünschten Empfangsfrequenz fE von 1000 kHz würde auch noch die Frequenz 1910 kHz auf die ZF heruntergemischt, in den ZF-Verstärker gelangen und demoduliert. Diese zweite, ungewollte Empfangsfrequenz nennt man Spiegelfrequenz. Sie ist mit dem Abstand der ZF-Frequenz an der Abstimmfrequenz gespiegelt.
Bei Empfängern mit ungenügender Spiegelfrequenzunterdrückung wird jeder Sender zweimal empfangen. Einmal auf der eigentlichen Sendefrequenz fE und ein zweites Mal als Spiegelfrequenz dieses Senders auf der Frequenz . Das wäre zwar unschön, aber nicht weiter störend. Problematisch wird der Spiegelfrequenzempfang dann, wenn die Empfangsfrequenz und die Spiegelfrequenz von einem Sender belegt ist, was bei hoher Bandbelegung sehr häufig vorkommt. Dann werden beide Sender gleichzeitig demoduliert und es kommt zu hörbaren Störungen.
Vor- und Nachteile
Vorteile:
- Es ist die einzige Art, sehr hohe Empfangsfrequenzen, wie sie etwa beim UKW- oder Satellitenempfang auftreten, stabil zu verarbeiten. Ein Geradeausempfänger ist dafür ungeeignet, weil er zu geringe Verstärkung und zu große Bandbreite hat.
- Der ZF-Filter ist auf eine feste Frequenz eingestellt, die meist niedriger als die Empfangsfrequenz ist. Deshalb ist es einfacher, den Filter mit höherem Gütefaktor auszulegen. Der ZF-Verstärker kann auf tiefen Frequenzen elektrisch stabiler aufgebaut werden als auf höheren Frequenzen.
- Ein Filter, das direkt auf der Empfangsfrequenz arbeitet, muss abstimmbar (in der Frequenz veränderbar) sein, damit verschiedene Frequenzen (Sender) empfangen werden können. Hochwertige schmalbandige, abstimmbare Filter sind bei hohen Frequenzen schwer zu realisieren, sie verändern zudem ihre Bandbreite mit der Empfangsfrequenz.
- Ein Filter fester, niedriger Frequenz erhöht die produktionstechnische Reproduzierbarkeit des Empfängers ganz entscheidend gegenüber anderen Konzepten wie dem Geradeausempfänger oder dem Audion. Für einen Großteil der aufwändigen Abgleicharbeiten, die bei einem Mehrkreisaudion erforderlich sind, genügt beim Superhet eine einmalige Einstellung bei der Herstellung.
- Wenn mehrere Bandfilter verwendet werden, kann eine nahezu rechteckförmige Durchlasskurve erzielt werden, die eine hohe Trennschärfe durch hohe Flankensteilheit gestattet, ohne dabei die hohen Frequenzen zu beschneiden.
- Man kann eine hohe Gesamtverstärkung ohne Rückkoppelgefahr erzielen, da Verstärkung auf unterschiedlichen Frequenzen erfolgt.
- Die Oszillatorfrequenz lässt sich - im Gegensatz zum Geradeausempfänger - beispielsweise mit PLL digital einstellen und stabilisieren.
- Letztlich sei noch die einfache Bedienbarkeit („Einknopfbedienung“) erwähnt, die das Überlagerungsprinzip mit sich bringt.
Nachteile:
- Durch das Überlagerungsprinzip entstehen Nebenempfangsstellen (Spiegelfrequenzen), die nur durch erhöhten Filteraufwand vor dem Mischer unterdrückt werden können.
- Durch den Abstimmoszillator und einen zu einfachen Mischer kann es zu unerwünschten Nebenprodukten und zu „Pfeifstellen“ kommen.
- Das Grundrauschen des Empfängers wird durch den zusätzlichen Abstimmoszillator und den Mischer gegenüber einem Geradeausempfänger erhöht.
- Teile des Lokaloszillatorsignals werden über die Empfangsantenne ausgestrahlt, wodurch die Empfangsanlage durch andere Empfänger mit Richtantenne geortet werden kann. Für die zivile Anwendung ist dieser Nachteil jedoch weitestgehend unerheblich.
Schaltungsvarianten
Einfachüberlagerung hat bei hohen Frequenzen den Nachteil, dass bei tiefer Zwischenfrequenz (455 kHz) die Spiegelfrequenz kaum von der gewünschten Empfangsfrequenz getrennt werden kann. Wählt man eine hohe Zwischenfrequenz (10,7 MHz), steigt auch die Bandbreite der ZF-Filter stark an. Deshalb und als Antwort auf spezielle Anforderungen sind Varianten des Überlagerungsempfängers entwickelt worden.
Doppel- und Mehrfachüberlagerungsempfänger
Beim Einfachsuperhet ist die gewählte Zwischenfrequenz immer ein Kompromiss. Einerseits soll sie möglichst niedrig sein, denn für niedrige Frequenzen lässt sich der ZF-Filter steilflankig und mit hohem Gütefaktor aufbauen. Andererseits verschärft eine niedrige ZF das Problem mit den Spiegelfrequenzen. Je niedriger die ZF-Frequenz ist, umso geringer ist der Abstand der Empfangsfrequenz fE zu einem Spiegelfrequenzen erzeugenden Signal (Abstand = ).
Eine niedrige ZF erfordert dadurch eine schmalbandige Vorselektion, um Spiegelfrequenzen wirksam zu unterdrücken. Das wird aber wieder umso schwieriger, je höher die Empfangsfrequenzen liegen, da hierzu der Filter in der Vorselektion bei gleicher Bandbreite eine höhere Güte haben muss.
Um dieses Problem zu umgehen, arbeitet der Doppelsuper mit zwei Zwischenfrequenzen. In Kurzwellen- und Amateurfunk-Receivern wird oftmals als erste ZF 10,7 MHz und als zweite ZF 455 kHz genutzt. Der Abstimmoszillator (VCO in Bild 1) schwingt hier um 10,7 MHz höher als fE. Durch die hohe erste ZF sind die Spiegelfrequenzen sehr weit (2 · 10,7 MHz = 21,4 MHz) von der empfangenen Nutzfrequenz entfernt. Damit kann die Vorselektion in der HF-Vorstufe entsprechend breitbandiger ausgelegt werden. Auf dieser hohen ersten ZF ist aber die Selektion des Nutzsignals schwierig (Breitbandiges Quarzfilter in Bild 1). Deshalb wird die erste ZF nochmals mit einem zweiten Oszillatorsignal (Quarzoszillator in Bild 1) gemischt. Dieser zweite Oszillator ist im Allgemeinen nicht abstimmbar und würde in dem Beispiel auf 11,155 MHz schwingen. Nach dem Mischen der ersten ZF mit dem Oszillatorsignal ist dann die gewünschte Empfangsfrequenz auf 455 kHz heruntergemischt. Auf der zweiten ZF kann jetzt wie beim Einfachsuperhet die Selektion im ZF-Filter (CW-Filter, SSB-Filter oder FM-Filter in Bild 1) vorgenommen werden.
→ Siehe auch: Weltempfänger
Es ist möglich, mehr als einen Oszillator abstimmbar zu machen. Dieses Prinzip wird zum Beispiel beim Kurzwellenempfänger Barlow Wadley XCR-30 angewandt. Bei diesem Empfänger wird das gewünschte Eingangssignal mit einem einstellbaren Oszillator in den ersten ZF-Bereich von 44,5–45,5 MHz hochgemischt. Dieser erste Oszillator dient der Auswahl des MHz-Bereichs. Die erste ZF wird dann mit einem Oszillatorsignal von konstanten 42,5 MHz in den zweiten ZF-Bereich zwischen 2–3 MHz gemischt. Aus der zweiten ZF wird anschließend mit einer normalen Einfachsuperhetschaltung die gewünschte Empfangsfrequenz im Kilohertzbereich eingestellt und auf die dritte ZF von 455 kHz heruntergemischt. Dieses Prinzip erfordert zwei Abstimmvorgänge: Die Auswahl des MHz-Frequenzbereichs mit dem ersten Abstimmrad (MHz SET) und anschließend die Auswahl der Empfangsfrequenz innerhalb dieses MHz-Abschnitts mit einem zweiten Abstimmrad (kHz SET).
Die Vorteile dieser Schaltung sind eine für einen analogen Empfänger gute Ablese- und Wiederholgenauigkeit und eine recht hohe Spiegelfrequenzunterdrückung. Das funktioniert ohne PLL, also ohne die damit einhergehenden potenziellen hochfrequenten Störquellen, leidet aber unter schlechtem Großsignalverhalten. Da die Selektion erst in der fünften Stufe erfolgt, können die vorhergehenden Stufen durch benachbarte Sender übersteuert sein, ohne dass man diese Sender hören kann.
Konverter, Frequenzumsetzer
Konverter oder Frequenzumsetzer sind Vorschaltgeräte, die einen Frequenzbereich auf einen anderen umsetzen (konvertieren). Es wird der zu empfangende Frequenzbereich im ersten Mischer mit einer konstanten Frequenz gemischt und so ein ganzes Frequenzband in einen anderen Frequenzbereich verlegt. Innerhalb dieses Frequenzbereichs wird dann mit einem Einfach- oder Mehrfachsuper auf den gewünschten Sender abgestimmt.
Ein Beispiel ist der LNB in der Satellitentechnik. Dieser reduziert die Empfangsfrequenz von etwa 10,7-12,7 GHz auf etwa 1–2 GHz und schickt diese erste Zwischenfrequenz über ein längeres Kabel zum Satellitenreceiver. Hier ist der erste ZF-Filter aber kein Festfrequenzfilter wie bei einem herkömmlichen Empfänger, sondern der Satelliten-Receiver ist seinerseits ein Superhet, der den vom LNB kommenden Frequenzbereich (meist 950 bis 2150 MHz) auf 480 MHz umsetzt.
Einsatz finden Frequenzkonverter noch beim Umsetzen des 70 cm-Amateurfunkbandes ins 2-m-Amateurfunkbands (historisch) und beim Unsetzen von UHF-Sendern ins VHF-Band (historisch). Für ältere TV-Geräte gibt es Konverter, die den Frequenzbereich der Kabel-Sonderkanäle in den UHF-Bereich umsetzen und für Autoradios gab es Konverter, welche Teile der KW-Bänder in den MW-Bereich verlegten.
Messempfänger
Ein Messempfänger dient - ähnlich einem Spektrumanalysator - der Ermittlung des Betragsspektrums eines elektromagnetischen Signals. Das verwendete Prinzip ist dem eines Spektrumanalysators nicht unähnlich. Die Demodulation erfolgt hier mit den Detektoren, mit denen die Signalpegel bewertet werden. Allerdings erfolgt vor der Mischung des Signals zusätzlich eine Vorselektion des HF-Signals. Ein Messempfänger „fegt“ (engl. sweep) nicht wie der Analysator kontinuierlich für einen Frequenzbereich (engl. span), sondern es werden diskrete Frequenzen ausgewählt, bei denen der Pegel zu messen ist.
Als Pendant zum „frequenz sweep“ des Analysators verfügen moderne Messempfänger über einen „frequenz scan“ (Der allerdings auch oft „sweep“ genannt wird). Hier wird in einem bestimmten Frequenzbereich an einer Frequenz eine definierte Zeit lang gemessen, bevor das Gerät einen automatischen Schritt (engl. step) zur nächsten Messfrequenz ausführt und erneut misst. Die Schrittweite ist dabei abhängig von der jeweiligen Auflösebandbreite, welche wiederum in Normen vorgeschrieben ist. Die Messzeit oder Verweildauer ist je nach zu messendem Signal zu wählen. Bei schmalbandigen Signalen kann die Zeit vergleichsweise klein gewählt werden, bei periodisch auftretenden transienten (Stör-)Signalen hingegen, muss die Messzeit der Wiederholfrequenz angepasst werden.
Bei modernen Messempfängern sind die ZF-Filterung, sowie die Detektoren, teilweise oder vollständig digital realisiert. Anforderungen an Messempfänger und deren Detektoren sind international in der CISPR 16-1-1 festgelegt.
Es entstehen heute immer mehr Verfahren, welche mit Hilfe der Schnellen Fouriertransformation (engl. Fast Fourier Transformation, FFT) die Funktion und Genauigkeit eines Messempfängers nachempfinden. Hauptsächlich will man hiermit lange Messzeit verkürzen, wie sie bei Messungen für die Elektromagnetischen Verträglichkeit notwendig sind. Messungen dieser Art werden in Fachkreisen Zeitbereich-Messungen oder Zeitbereichsmethoden (engl. Time-Domain-Measurement) genannt. Insbesondere in Deutschland wurde in den vergangenen Jahren viel Forschung betrieben und es entstanden Lösungen, sowohl in kommerziellen Messempfängern implementiert, als auch aus einzelnen Komponenten (Messempfänger, Digitaloszilloskop, PC) zum Eigenbau.
Begriffe
- Eindeutigkeit
- Ein Eingangssignal muss eindeutig mit der Skala oder Frequenzanzeige übereinstimmen. Im anderen Fall spricht man von Mehrdeutigkeit.
- Empfindlichkeit
- Die Empfindlichkeit eines Empfängers gibt an, um wie viel stärker ein Nutzsignal (eine Radiosendung oder ähnliches) gegenüber dem Rauschen sein muss, damit der Empfang dieses Nutzsignals noch möglich ist. Das Eingangssignal soll trotz des Rauschens der Empfängerstufen und des über die Antenne zugeführten Außenrauschens noch gut aufzunehmen sein - egal in welcher Betriebsart.
- Feinabstimmung
- Unabhängig von der Sendeart (WFM - UKW-Radio, SSB, CW etc.) muss eine gute Abstimmung bei gleich bleibender Selektivität gegeben sein.
- Kompression, Übersteuerungsfestigkeit
- Analog zur Empfindlichkeit, stellt dies die obere Grenze des Aussteuerbereichs dar. Sie wird angegeben durch den 1-dB-Kompressionspunkt.
- Kreuzmodulation, Zustopfeffekt
- Wird die Information/Modulation eines starken Nachbarsenders durch den empfangenen Sender übernommen, so spricht man von Kreuzmodulation. Bei getasteten HF-Trägern spricht man im selben Fall vom Zustopfeffekt.
- Selektivität
- Die Selektivität oder Trennschärfe bezeichnet die Fähigkeit des Empfängers, aus mehreren, dicht in der Frequenz beieinanderliegenden Sendern den gewünschten herauszufiltern, siehe Nahselektion.
- Spiegelfrequenzunterdrückung
- Der Wert der Spiegelfrequenzunterdrückung gibt an, wie gut Spiegelfrequenzen gedämpft werden, die Angabe ist in Dezibel, höhere Werte sind besser.
- Stabilität
- Das Nutzsignal soll immer gut empfangbar sein, unabhängig von thermischen und/oder elektrischen Einflüssen.
- Überlagerung
- Die Addition zweier Schwingungen nennt man Überlagerung. Für den Überlagerungsempfänger ist der Begriff also eigentlich nicht richtig, da hier eine Mischung (also eine Multiplikation) stattfindet. Gemeint ist allerdings die Addition des Betrags in Dezibel, was gleichbedeutend mit einer Multiplikation ist.
Mathematischer Anhang
Idealer Mischer (Multiplizierer)
Das Zustandekommen der beiden Seitenbänder beim Mischen lässt sich mathematisch so erklären:
Das Eingangssignal sei , das Signal des idealen Abstimmoszillators sei .
Das Ausgangssignal des Multiplizierers ist somit
- .
Durch Anwendung der Additionstheoreme ergibt sich
- .
Dabei entspricht der Teil
- dem oberen Seitenband (fSum)
und
- dem unteren Seitenband (fDif).
Sonstiges
Blockschaltbild eines handelsüblichen Stereo-Empfängers (Receiver) mit VCO, PLL und Mikrocomputersteuerung:
Ansicht auf die Leiterplatte eines Überlagerungsempfängers:
Der UKW-Tuner (1) enthält die HF-Stufen, den Oszillator (VCO) und die Mischstufe. Dabei werden die HF-Stufen und der Oszillator über Kapazitätsdioden abgestimmt. Der Tuner besitzt unter anderem einen Eingang für die Abstimmspannung, sowie einen Ausgang für die Oszillatorfrequenz (für PLL). Unter (2) sind die drei 10,7-MHz-Keramikfilter für die ZF zu sehen. Die ZF wird dem IC (3) zugeführt, welcher unter anderem den FM-Demodulator enthält. Der oft verwendete 7,1-MHz-Quarz unter (4) ist für die Referenzfrequenz der PLL zuständig. Der PLL-IC (meist ein LM 7000, LM 7001) ist ein SMD-Bauteil auf der Rückseite der Leiterplatte und nicht zu sehen.
Eine Anwendung des Heterodynprinzips im Infraroten wurde mit dem Infrared Spatial Interferometer verwirklicht, bei dem die aufgefangene Strahlung mit der aus Infrarotlasern gemischt und dadurch zu HF umgesetzt wird.
Fußnoten und Einzelnachweise
- ↑ Artikel über Edwin Armstrong in der englischsprachigen Wikipedia
- ↑ Alan Douglas: Who Invented the Superheterodyne?. (Origialartikel: The Legacies of Edwin Howard Armstrong. In: Proceedings of the Radio Club of America Nr. 3, 1990, Vol. 64
- ↑ Edwin H. Armstrong: Method of Receiving High Frequency Oscillations.. („Verfahren zum Empfangen hochfrequenter Schwingungen“) US-Patent Nr. 1.342.885
- ↑ Radiola AR-812 (englisch)
Literatur
- Jens Heinich: Eine kurze Chronik der Funkgeschichte. Hein, Dessau 2002. ISBN 3-936124-12-4.
- Martin Gerhard Wegener: Moderne Rundfunk-Empfangstechnik. Franzis, München 1985, ISBN 3-7723-7911-7.
- Ferdinand Jacobs: Lehrgang Radiotechnik. Franzis, München 1951, ISBN 3-7723-5362-2 (2 Bände).
- Philips GmbH (Hrsg.): Philips Lehrbriefe. Band 1. Einführung und Grundlagen. Philips Fachbücher. Hamburg 1987.
- Otto Limann, Horst Pelka: Funktechnik ohne Ballast. Einführung in die Schaltungstechnik der Rundfunkempfänger. 16. Auflage. Franzis, München 1984, ISBN 3-7723-5266-9.
- Dieter Nührmann: Das große Werkbuch Elektronik. Franzis, Poing 2001. ISBN 3-7723-5575-7
- Heinrich Hübscher (Hrsg.) u. a. : Elektrotechnik. Fachbildung Kommunikationselektronik. Band 2. Radio-, Fernseh-, Funktechnik. Westermann, Braunschweig 1989, ISBN 3-14-221330-9.
- W. Rohländer: Der Superhet. In: Funkamateur. Theuberger, Berlin 1977, ISSN 0016-2833, S. 193.
- Christoph Rauscher: Grundlagen der Spektrumanalyse. 3. Auflage. Rohde & Schwarz, München 2007, ISBN 978-3-939837-00-8.
Weblinks
- Jogis Roehrenbude: Überlagerungsempfänger für AM (Sehr ausführliche Erklärung)
- Funkschau Nr.49, 1932 (Superhet-Sonderheft): S. 385-388 S. 389-392 (pdf, digitalisiert von www.radiomuseum.org)
- Who Invented the Superheterodyne? – Wer erfand den Superheterodyne? (englisch)
- Edwin Armstrong: Pioneer of the Airwaves – Edwin Armstrong: Pionier der Ätherwellen (englisch)
- Lucien Levy – Kurze Biografie von Lucien Lévy (französisch)
- Barlow Wadley – Alles über den Barlow Wadley (englisch)
- Skript zum Thema Empfängertechnik
Wikimedia Foundation.