- Trägheitsmoment
-
Physikalische Größe Name Trägheitsmoment Formelzeichen der Größe I, J, Θ Größen- und
Einheiten-
systemEinheit Dimension SI kg·m2 M·L2 Siehe auch: Trägheitstensor / Schwungmoment Das Trägheitsmoment, auch Massenträgheitsmoment oder Inertialmoment, ist eine physikalische Größe in der klassischen Mechanik. Es gibt den Widerstand eines starren Körpers gegenüber einer Änderung seiner Rotationsbewegung an. Dabei spielt es die Rolle, die bei einer geradlinigen Bewegung die Masse hat. Deswegen ist in der älteren Literatur auch die Bezeichnung Drehmasse gebräuchlich. Als physikalische Größe kommt es erstmals 1740 im Werk Theoria motus corporum solidorum seu rigidorum von Leonhard Euler vor.
Das Trägheitsmoment eines Körpers hängt von seiner Form, der Massenverteilung und zusätzlich noch von der Drehachse ab. Zur vollständigen Beschreibung des Trägheitsverhaltens eines starren Körpers reicht deshalb eine einzelne Zahl nicht aus. Man verwendet dafür den Trägheitstensor, aus dem das Trägheitsmoment für jede beliebige Achse berechnet werden kann.
Bedeutung
Werden Körper mit verschiedener Massenverteilung, z. B. zwei Kugeln gleicher Masse aber unterschiedlichen Durchmessers – etwa aus Holz und aus Blei, zum Rotieren gebracht, so ist ihre Massenverteilung um die Drehachse entscheidend: je weiter die Masseteilchen von der Drehachse entfernt sind, desto größer ist aufgrund des Hebelgesetzes das benötigte Drehmoment, um beide Kugeln innerhalb einer bestimmten Zeit in eine Drehung mit gleicher Frequenz zu versetzen. Für den Körper als Summe seiner Massepunkte folgt: für die bei gleicher Masse größere Holzkugel ist das größere Drehmoment nötig. Die Trägheit, die die Kugeln der Winkelgeschwindigkeitsänderung entgegensetzen, wird durch das Trägheitsmoment beschrieben.
Anschauliche Experimente: Drehstuhl, Pirouette
Mit einem einfachen Experiment kann man eine Änderung des Trägheitsmoments veranschaulichen. Man setzt sich möglichst mittig auf einen drehbaren Bürostuhl und lässt sich mit gestreckten Armen und Beinen in Drehung versetzen. Wenn man dann die Arme und Beine an den Körper heranzieht, nimmt das Trägheitsmoment ab. Das führt dazu, dass die Drehbewegung schneller wird, weil der Drehimpuls erhalten bleibt (siehe Drehimpulserhaltung). Erneutes Ausstrecken verlangsamt die Bewegung wieder. Um den Effekt zu verstärken, kann man in jede Hand schwere Gegenstände nehmen, etwa Hanteln. Je größer deren Masse, desto deutlicher wird der Effekt.
Ein ähnliches Beispiel ist der Pirouetteneffekt, der aus dem Eiskunstlaufen bekannt ist. Die Kontrolle der Drehgeschwindigkeit kann allein aus der Verlagerung der Körpermasse aus der Drehachse erfolgen. Zieht der Eiskunstläufer die Arme an oder richtet sich aus einer Hockstellung gerade auf, so dreht er sich schneller – ein erneutes Schwung holen ist nicht nötig.
Formelzeichen und Einheit
Die geläufigsten Formelzeichen für das Trägheitsmoment sind J und I, zurückgehend auf das lateinische Wort iners, das untätig und träge bedeutet. Da beide Symbole aber auch in der Elektrotechnik Verwendung finden, ist weiterhin ein Θ (großes Theta) gebräuchlich. In diesem Artikel wird durchgehend J verwendet.
Die SI-Einheit des Trägheitsmoments ist kg·m2.
Vergleich mit der Masse bei linearer Bewegung
Das Trägheitsmoment J bei einer rotierenden Bewegung ist vergleichbar zur Masse m einer linearen (geradlinigen) Bewegung. Man vergleiche folgende Gleichungen:
- Rotationsbewegung: Drehmoment = Trägheitsmoment mal Winkelbeschleunigung,
- geradlinige Bewegung: Kraft = Masse mal Beschleunigung (Zweites Newtonsches Gesetz).
Allgemeine Definition
Das Massenträgheitsmoment J lässt sich bei bekannter Massenverteilung eines Körpers aus folgendem Volumenintegral berechnen:
- .
Dabei ist der zur Rotationsachse senkrechte Anteil von (siehe nebenstehende Abbildung).
Motivation der Definition
Starrer Körper bestehend aus Massenpunkten
Die gesamte kinetische Energie eines starren Körpers, der aus N Massenpunkten besteht, ergibt sich aus der Summe der kinetischen Energien der einzelnen Massenpunkte:
- .
Dabei ist vi die Bahngeschwindigkeit des i-ten Massepunktes. Nun soll der gesamte Körper um die Achse rotieren. Jeder einzelne Massenpunkt beschreibt daher eine Kreisbahn. Die Bahngeschwindigkeit v eines Teilchens, das auf einer Kreisbahn mit Radius r mit der Winkelgeschwindigkeit ω rotiert, lässt sich als berechnen. Daher folgt:
- .
Analog zur Definition der Bewegungsenergie
eines linear bewegten starren Körpers aus N Massenpunkten mit der Gesamtmasse M, definiert man das Trägheitsmoment eines rotierenden starren Körpers aus N Massenpunkten als
- .
Es gilt also
- .
Durch diese Definition kann man folgende Größen rotierender Massenpunkte mit den Größen linear bewegter Massenpunkte identifizieren:
- Die Masse eines rotierenden Körpers entspricht dem Trägheitsmoment J.
- Die Geschwindigkeit eines rotierend Körpers entspricht der Winkelgeschwindigkeit ω.
Wählt man die z-Achse des Koordinatensystems in Richtung der Rotationsachse, so lässt sich noch folgende praktische Gleichung ableiten:
- .
Wobei xi und yi die x- und y-Koordinaten des i-ten Massenpunktes im so gewählten Koordinatensystem sind. Der Index "z" ist wichtig, da das Trägheitsmoment eines Körpers immer auf eine Rotationsachse (hier die z-Achse) bezogen ist. Aus der Gleichung ist auch ersichtlich, dass das Trägheitsmoment nicht von den z-Koordinaten der einzelnen Massenpunkte abhängt. Das Trägheitsmoment ist unabhängig von den Koordinaten der Massenpunkte in Richtung der Rotationsachse.
Starrer Körper beschrieben durch Massenverteilung
Die Formel für das Massenträgheitsmoment einer allgemeinen Massenverteilung erhält man, in dem man sich die Massenverteilung aus vielen kleinen Massenelementen Δmi aufgebaut, vorstellt. Die Rotationsenergie ist dann durch
- .
gegeben. Der Übergang zum Integral mit dem Volumen V, des aus den infinitesimalen Massenelementen dm zusammengesetzten Körpers, ergibt
- .
Hieraus ergibt sich die oben angegebene allgemeine Definition des Trägheitsmomentes[1] mit einer ortsabhängigen (also im Allgemeinen inhomogenen) Massendichte .
Zusammenhang des Trägheitsmomentes mit Drehimpuls
Der Gesamtdrehimpuls des starren Körpers lässt sich durch berechnen. Dies lässt sich wie folgt einsehen. Da der Drehimpuls eines einzelnen Massenelementes Δmi
ist, ergibt sich der Gesamtdrehimpuls zu
Außerdem folgt daraus sofort
Formeln für wichtige Spezialfälle
Homogene Massenverteilung
Bei einer homogenen Masseverteilung ist die Dichte örtlich konstant. Die Dichte kann vor das Integral gezogen werden und die Formel für das Trägheitsmoment vereinfacht sich zu
Weiter unten ist eine Beispielrechnung angegeben.
Trägheitsmoment rotationssymmetrischer Körper
Das Trägheitsmoment rotationssymmetrischer Körper, die um ihre Symmetrieachse (z-Achse) rotieren, kann einfach mit Hilfe von Zylinderkoordinaten berechnet werden. Dazu muss entweder die Höhe als Funktion des Radius (h = h(r)) oder der Radius als Funktion der z-Koordinate (r = r(z)) bekannt sein. Das Volumenelement in Zylinderkoordinaten ergibt sich zu . Die Integrationen über φ und z bzw. über φ und r sind leicht auszuführen und man erhält:
- bzw.
Trägheitsmoment bezüglich zueinander paralleler Achsen
Ist das Trägheitsmoment JS für eine Achse durch den Schwerpunkt eines Körpers bekannt, so kann mit Hilfe des steinerschen Satzes das Trägheitsmoment JP für eine beliebige parallel verschobene Drehachse berechnet werden. Die Formel lautet:
Dabei gibt d den Abstand der Achse durch den Schwerpunkt zur parallel verschobenen Drehachse an.
Man kann die Steiner-Regel für zwei beliebige parallele Drehachsen verallgemeinern. Dazu muss die Steiner-Regel zweimal hintereinander angewendet werden: Zunächst verschiebe man die Drehachse so, dass sie durch den Schwerpunkt des Körpers geht, danach auf den gewünschten Zielort.
Verallgemeinerung durch Trägheitstensor
Der Trägheitstensor Ixy eines Körpers ist eine Verallgemeinerung des Trägheitsmomentes. In einem kartesischen Koordinatensystem lässt sich der Trägheitstensor als Matrix darstellen, die sich aus den Trägheitsmomenten bezüglich der drei Koordinatenachsen und den Deviationsmomenten zusammensetzt. Die drei Trägheitsmomente bilden die Diagonale der Matrix, die Deviationsmomente sind die Nebendiagonalelemente. Mit Hilfe des Trägheitstensors lässt sich z. B. das Trägheitsmoment bezüglich einer beliebigen, durch den Schwerpunkt gehenden Achse berechnen. Wenn ein starrer Körper um eine solche Achse mit der Winkelgeschwindigkeit rotiert, so ergibt sich das Trägheitsmoment zu
oder in Matrixschreibweise
Drehung des Koordinatensystems
Eine Achse in beliebiger Raumrichtung wird beschrieben durch den Einheitsvektor . Man kann diesen z. B. dadurch erhalten, dass man den Einheitsvektor in z-Richtung mittels einer Drehmatrix R dreht:
Mit erhält man
Mit Hilfe dieser Drehmatrix kann nun der Trägheitstensor in ein Koordinatensystem transformiert werden, in dem die z-Achse in Richtung der Rotationsachse zeigt:
Das Trägheitsmoment für die neue z-Achse ist jetzt einfach das 3. Diagonalelement des Tensors in der neuen Darstellung. Nach Ausführung der Matrizenmultiplikation und trigonometrischen Umformungen ergibt sich
Beispielrechnung: Rotationssymmetrischer Körper
Wir betrachten als Beispiel dazu den Trägheitstensor eines rotationssymmetrischen Körpers. Wenn eine der Koordinatenachsen (hier die z-Achse) mit der Symmetrieachse zusammenfällt, dann ist dieser Tensor diagonal. Die Trägheitsmomente für Rotation um die x-Achse und die y-Achse sind gleich (Ixx = Iyy = J1). Für die z-Achse kann das Trägheitsmoment verschieden sein (Izz = J2). Der Trägheitstensor hat damit folgende Gestalt:
Transformiert man diesen Tensor wie oben beschrieben in ein Koordinatensystem, das um den Winkel um die y-Achse gedreht ist, so erhält man:
Daraus ergibt sich:
- Für sind die Trägheitsmomente für die x- und z-Achse von abhängig.
- Für ist der Trägheitstensor nicht mehr diagonal, es treten Deviationsmomente auf.
- Das Trägheitsmoment für die neue z-Achse ist:
- Für J1 = J2 hängt wegen das Trägheitsmoment nicht von der Richtung der Drehachse ab
Besondere Trägheitsmomente
Hauptträgheitsmoment
Betrachtet man einen unregelmäßig geformten Körper, der um eine Achse durch seinen Schwerpunkt rotiert, so variiert dessen Trägheitsmoment je nach Lage der Drehachse. Dabei gibt es zwei Achsen, bezüglich derer das Trägheitsmoment des Körpers maximal bzw. minimal ist. Diese Achsen stehen immer senkrecht zueinander und bilden zusammen mit einer dritten, wiederum senkrecht auf beiden stehenden Achse die Hauptträgheitsachsen des Körpers. In einem von den Hauptträgheitsachsen aufgespannten Koordinatensystem ist der Trägheitstensor diagonal. Die zu den Hauptträgheitsachsen gehörenden Trägheitsmomente sind also die Eigenwerte des Trägheitstensors, sie heißen Hauptträgheitsmomente.
Die Hauptträgheitsachsen fallen mit eventuell vorhandenen Symmetrieachsen des Körpers zusammen. Sind zwei Hauptträgheitsmomente gleich groß, so sind alle Drehachsen in der Ebene, die von den zugehörigen Hauptträgheitsachsen aufgespannt wird, ebenfalls Hauptträgheitsachsen mit dem gleichen Trägheitsmoment. Das ist bei zylindersymmetrischen Körpern unmittelbar klar, gilt aber z. B. ebenso für einen Stab mit quadratischer oder hexagonaler Grundfläche. Für den Fall, dass alle Hauptträgheitsmomente identisch sind, ist, wie oben gezeigt wurde, jede Drehachse durch den Schwerpunkt eine Hauptträgheitsachse mit dem gleichen Trägheitsmoment. Für alle regelmäßigen Körper wie Kugel, Tetraeder, Würfel, usw. ist demnach das Trägheitsmoment für jede Achse durch den Schwerpunkt gleich groß.
Siehe auch: Trägheitsellipsoid
Trägheitsmoment zur eingespannten Achse
Wenn ein starrer Körper um eine fest eingespannte Achse mit der Winkelgeschwindigkeit rotiert (die Richtung des Vektors ist die Richtung der Drehachse), so lässt sich der Drehimpuls aus der allgemeinen Formel berechnen. Dabei ist I im Gegensatz zur oben angegeben Formel nicht das Trägheitsmoment sondern der Trägheitstensor. Im Allgemeinen hat der Drehimpuls jetzt nicht die Richtung der Drehachse und ist zeitlich nicht konstant, so dass die Lager ständig Drehmomente aufbringen müssen (Dynamische Unwucht). Nur bei Rotation um eine der Hauptträgheitsachsen ist .
Für die Drehimpulskomponente L entlang der Drehachse gilt L = Jω, dabei ist ω die Winkelgeschwindigkeit und J das Trägheitsmoment bezüglich der Drehachse . Die kinetische Energie der Rotation, auch kurz als Rotationsenergie bezeichnet, kann durch
ausgedrückt werden. Diese Formeln zeigen die Analogie zu den entsprechenden Formeln für Impuls und kinetische Energie der Translationsbewegung.
Beispiele
Trägheitsmomente von Himmelskörpern
Fast alle größeren Körper im Weltall (Sterne, Planeten) sind angenähert kugelförmig und rotieren mehr oder weniger schnell. Das Trägheitsmoment um die Rotationsachse ist immer das größte des Himmelskörpers.
Die Differenz dieses „polaren“ und des äquatorialen Trägheitmoments hängt mit der Abplattung des Körpers zusammen, also seiner Verformung der reinen Kugelgestalt durch die Fliehkraft der Rotation. Bei der Erde liegt diese Differenz bei 0,3 Prozent, entspricht also fast der Erdabplattung von 1:298,24. Beim rasch rotierenden Jupiter sind diese Relativwerte rund 20-mal größer.
Das Trägheitsmoment eines Himmelskörpers lässt wegen r² im obigen Integral auf die innere Konzentration seiner Masse schließen. Jenes der Erde ist kleiner, als wenn sie homogen aufgebaut wäre, nämlich etwa 0,33 m r2, statt 0,4 m r2.[2] Daraus kann man errechnen, dass der Erdkern aus Eisen (oder metallisch verdichtetem Wasserstoff) besteht.
Hauptträgheitsmomente einfacher geometrischer Körper
Wenn nicht ausdrücklich anders angegeben, liegt der Schwerpunkt der geometrischen Körper auf der Drehachse auf die sich das Trägheitsmoment bezieht. m ist die Masse des rotierenden Körpers. Das Trägheitsmoment für Drehungen um andere Achsen kann man dann mit Hilfe des Satzes von Steiner berechnen.
Abbildung Beschreibung Trägheitsmoment Eine Punktmasse im Abstand r um eine Drehachse. Ein Zylindermantel, der um seine Symmetrieachse rotiert, für eine Wandstärke . [3] Ein Vollzylinder, der um seine Symmetrieachse rotiert. [3] Ein Hohlzylinder, der um seine Symmetrieachse rotiert. Schließt die vorgenannten Grenzfälle Zylindermantel und Vollzylinder mit ein. [4] Ein Vollzylinder, der um eine Querachse (zweizählige Symmetrieachse) rotiert. [4] Ein Zylindermantel, der um eine Querachse (zweizählige Symmetrieachse) rotiert. [5] Ein dünner Stab, der um eine Querachse (zweizählige Symmetrieachse) rotiert. Diese Formel ist eine Näherung für einen Zylinder mit . [4] Dünner Stab, der um eine Querachse durch ein Ende rotiert. Diese Formel ist die Anwendung der Steiner-Regel auf den dünnen Stab. [6] Eine Kugelschale, die um eine Achse durch den Mittelpunkt rotiert, für eine Wandstärke . [7] Eine massive Kugel, die um eine Achse durch den Mittelpunkt rotiert. [7] Ein Quader, der um eine Achse durch den Mittelpunkt rotiert, die parallel zu seinen Kanten c liegt. [7] Ein massiver Kegel, der um seine Achse rotiert. [4] Ein Kegelmantel, der um seine Achse rotiert. Die Gleichheit mit dem Trägheitsmoment eines Vollzylinders kann man sich so vorstellen, dass man jeden Kegelmantel zu einer Kreisscheibe "plattdrücken" kann, ohne sein Trägheitsmoment zu verändern. Ein massiver Kegelstumpf, der um seine Achse rotiert. [8] Eine vierseitige, regelmäßige Pyramide, die um ihre Symmetrieachse rotiert. [9] Beispielrechnung: Trägheitsmoment der homogenen Vollkugel
- Zum Verständnis dieses Abschnittes sind grundlegende Kenntnisse der Integralrechnung und Koordinatentransformation hilfreich.
Um das Trägheitsmoment einer massiven homogenen Kugel bezüglich einer Drehachse durch den Kugelmittelpunkt zu berechnen, wird das im Abschnitt „Berechnung“ angegebene Integral verwendet. Der Einfachheit halber soll der Kugelmittelpunkt im Ursprung eines kartesischen Koordinatensystems liegen und die Drehachse entlang der z-Achse verlaufen. Um das Integral
auszuwerten, empfiehlt es sich statt kartesischen lieber Kugelkoordinaten zu verwenden. Beim Übergang müssen dabei die kartesischen Koordinaten x, y, z und das Volumenelement dV durch die Kugelkoordinaten ausgedrückt werden. Das geschieht mithilfe der Ersetzungsregeln
und der Funktionaldeterminanten
Einsetzen in den Ausdruck für das Trägheitsmoment liefert
Hier zeigt sich der Vorteil der Kugelkoordinaten: Die Integralgrenzen hängen nicht voneinander ab. Die beiden Integrationen über r und φ lassen sich daher elementar ausführen. Das verbleibende Integral in
kann durch partielle Integration mit
gelöst werden:
Für das Trägheitsmoment ergibt sich schließlich:
Experimentelle Bestimmung
Zur Messung eines Trägheitsmoments eines Körpers verwendet man einen Drehtisch. Dieser besteht aus einer Kreisscheibe, die um ihre Symmetrieachse drehbar ist und einer Schneckenfeder. Sie bewirkt bei einer Drehung der Scheibe ein rücktreibendes Drehmoment D, das direkt proportional zum Auslenkwinkel φ ist: D = − Drφ. Die Proportionalitätskonstante Dr nennt man Direktionsmoment oder Richtmoment. Ihr Wert hängt von der Stärke der Feder ab. Die Scheibe führt nun harmonische Schwingungen mit der Schwingungsdauer
- ,
aus, wobei J0 das Trägheitsmoment der Scheibe ist. Legt man nun zusätzlich einen Körper mit bekanntem Trägheitsmoment J1 auf die Scheibe, so ändert sich die Schwingungsdauer zu
- .
Aus der Differenz
lässt sich das Direktionsmoment Dr des Drehtisches bestimmen und aus obiger Formel für T0 erhält man dann das Trägheitsmoment J0 des Drehtisches. Legt man nun einen beliebigen Körper auf den Drehtisch, so kann man sein Trägheitsmoment J bezüglich der Rotationsachse aus der gemessenen Schwingungsdauer
berechnen.
Siehe auch
Literatur
- Paul A. Tipler: Physik. 3. korrigierter Nachdruck der 1. Auflage 1994, Spektrum Akademischer Verlag Heidelberg Berlin, 2000, ISBN 3-86025-122-8
- Ernst W. Otten: Repetitorium Experimentalphysik. Springer-Verlag Berlin Heidelberg, 1998, ISBN 3-540-62987-4
- Torsten Fließbach: Mechanik. 3. Auflage, Spektrum Akademischer Verlag, Heidelberg 1999, ISBN 3-8274-0546-7
- Herbert Goldstein, Charles Poole, John Safko: Classical mechanics. International Edition, 3. Auflage, Pearson/Addison Wesley, Upper Saddle River, N.J., 2002, ISBN 0-321-18897-7
- Wolfgang Demtröder: Experimentalphysik 1. 5. neu bearbeitete und aktualisierte Auflage, Springer-Verlag Berlin Heidelberg, 2008, ISBN 978-3-540-79294-9
Einzelnachweise
- ↑ Demtröder: Experimentalphysik 1. 2008, S. 145
- ↑ NASA Earth Fact Sheet
- ↑ a b Demtröder: Experimentalphysik 1. 2008, S. 147
- ↑ a b c d M. Spiegel, J. Liu: Mathematical handbook of formulas and tables. McGraw-Hill, 1999, ISBN 0-07-038203-4, S. 38
- ↑ M. Alonso, E. Finn: Physics. Addison-Wesley , 1995, ISBN 0-201-56518-8, S. 324
- ↑ Demtröder: Experimentalphysik 1. 2008, S. 148
- ↑ a b c Demtröder: Experimentalphysik 1. 2008, S. 149
- ↑ G. Maitra: Handbook of mechanical design. Tata McGraw-Hill, 1995, ISBN 0-07-460238-1, S. 2-36
- ↑ G. Maitra: Handbook of mechanical design. Tata McGraw-Hill, 1995, ISBN 0-07-460238-1, S. 2-35
Weblinks
Wikibooks: Die Mechanik starrer Körper – Lern- und LehrmaterialienCommons: Moments of inertia – Sammlung von Bildern, Videos und Audiodateien- Trägheitsmomente geometrischer Körper bei Matheplanet – Anleitungen zum Berechnen diverser Trägheitsmomente mit Beispielen.
- Interaktives Java-Applet mit 3D-Visualisierung – Näherung der Trägheitsmomente frei definierbarer Körper mit diversen Beispielen.
Dieser Artikel wurde in die Liste der lesenswerten Artikel aufgenommen. Kategorien:- Wikipedia:Lesenswert
- Physikalische Größenart
- Technische Dynamik
Wikimedia Foundation.