- Cauchy-Verteilung
-
Die Cauchy-Lorentz-Verteilung (nach Augustin Louis Cauchy und Hendrik Antoon Lorentz) ist eine stetige, leptokurtische (supergaußförmige) Wahrscheinlichkeitsverteilung. Während die Verteilung in der Stochastik als Cauchy-Verteilung bezeichnet wird, ist sie in der Physik als Lorentz-Verteilung bzw. Lorentz-Kurve oder Lorentz-Linie (z. B. in der Spektroskopie zur Beschreibung der Gestalt von Spektrallinien) oder als Breit-Wigner-Verteilung (z. B. zur Beschreibung von Resonanzkurven) bekannt.
Inhaltsverzeichnis
Definition
Die Cauchy-Verteilung ist eine stetige Wahrscheinlichkeitsverteilung, die die Wahrscheinlichkeitsdichte
mit s > 0 und besitzt.
Die Verteilungsfunktion der Cauchy-Verteilung ist
- .
Mit dem Zentrum t = 0 und dem Breitenparameter s = 1 ergibt sich die Standard-Cauchy-Verteilung oder auch t-Verteilung mit einem Freiheitsgrad
- .
Eigenschaften
Erwartungswert, Varianz, Standardabweichung, Momente
Die Cauchy-Verteilung gilt als Prototyp einer Verteilung, die weder Erwartungswert noch Varianz oder Standardabweichung besitzt, da die entsprechenden Integrale nicht definiert sind. Dementsprechend besitzt sie auch keine Momente oder momenterzeugende Funktion.
Median, Modus
Die Cauchy-Verteilung besitzt den Median bei t und den Modus ebenfalls bei t.
Entropie
Die Entropie beträgt .
Charakteristische Funktion
Die charakteristische Funktion der Cauchy-Verteilung ist .
Reproduktivität
Die Cauchy-Verteilung gehört zu den reproduktiven Wahrscheinlichkeitsverteilungen: der Mittelwert aus n Standard-Cauchy-verteilten Zufallsvariablen ist selbst Standard-Cauchy-verteilt. Insbesondere gehorcht die Cauchy-Verteilung also nicht dem Gesetz der großen Zahlen, das für alle Verteilungen mit existierendem Erwartungswert (siehe Satz von Etemadi) gilt.
Invarianz gegenüber Faltung
Die Cauchy-Verteilung ist invariant gegenüber Faltung, das heißt, die Faltung einer Lorentz-Kurve der Halbwertsbreite Γa und einem Maximum bei ta mit einer Lorentz-Kurve der Halbwertsbreite Γb und einem Maximum bei tb ergibt wieder eine Lorentz-Kurve mit der Halbwertsbreite Γc = Γa + Γb und einem Maximum bei tc = ta + tb.
Beziehungen zu anderen Verteilungen
Beziehung zur Lévy-Verteilung
Die Cauchy-Verteilung ist eine spezielle α-stabile Lévy-Verteilung mit dem Exponentenparameter α = 1.
Beziehung zur Normalverteilung
Der Quotient aus zwei Standard-normalverteilten Zufallsvariablen ist Standard-Cauchy-verteilt.
Beziehung zu Studentschen t-Verteilung
Für n = 1 und mit ergibt sich die Cauchy-Verteilung als Spezialfall aus der Studentschen t-Verteilung.
Anwendungsbeispiel
Bei der Cauchy-Verteilung ist die Wahrscheinlichkeit für extreme Ausprägungen sehr groß. Sind die 1% größten Werte einer standardnormalverteilten Zufallsvariablen X mindestens 2,58, beträgt bei einer Cauchy-verteilten Zufallsvariablen die entsprechende Untergrenze ca. 31. Möchte man die Auswirkung von Ausreißern in Daten auf statistische Verfahren untersuchen, verwendet man häufig Cauchy-verteilte Zufallszahlen in Simulationen.
Zufallszahlen
Zur Erzeugung cauchyverteilter Zufallszahlen bietet sich die Inversionsmethode an.
Die nach dem Simulationslemma zu bildende Pseudoinverse der Verteilungsfunktion F(x) lautet hierbei F − 1(y) = tan(πy). Zu einer Folge von Standardzufallszahlen ui lässt sich daher eine Folge xi: = tan(πui) cauchyverteilter Zufallszahlen berechnen.
Literatur
- William Feller: An Introduction to Probability Theory and Its Applications: 1. 3. Auflage. Wiley & Sons, 1968, ISBN 0471257087.
- William Feller: An Introduction to Probability Theory and Its Applications: 2. 2. Auflage. John Wiley & Sons, 1991, ISBN 0471257095.
Weblinks
Commons: Cauchy-Verteilung – Sammlung von Bildern, Videos und Audiodateien- Universität Konstanz – Interaktive Animation
Diskrete univariate VerteilungenDiskrete univariate Verteilungen für endliche Mengen:
Benford | Bernoulli | beta-binomial | binomial | kategorial | hypergeometrisch | Rademacher | Zipf | Zipf-MandelbrotDiskrete univariate Verteilungen für unendliche Mengen:
Boltzmann | Conway-Maxwell-Poisson | negativ binomial | erweitert negativ binomial | Compound-Poisson | diskret uniform | discrete-Phase-Type | Gauss-Kuzmin | geometrisch | logarithmisch | parabolisch-fraktal | Poisson | Poisson-Gamma | Skellam | Yule-Simon | Zeta
Wikimedia Foundation.
Schlagen Sie auch in anderen Wörterbüchern nach:
Cauchy-Verteilung — [ko ʃi ; nach A. L. Cauchy], Stochastik: t Verteilung … Universal-Lexikon
Lorentz-Verteilung — Die Cauchy Verteilung für verschiedene Werte der beiden Parameter. Dabei gilt: γ im Bild entspricht s in der nebenstehenden Gleichung und x0 entspricht t. Die Cauchy Lorentz Verteilung (nach Augustin Louis Cauchy und Hendrik Antoon Lorentz) ist… … Deutsch Wikipedia
Gauss-Verteilung — Dichten normalverteilter Zufallsgrößen Die Normal oder Gauß Verteilung (nach Carl Friedrich Gauß) ist ein wichtiger Typ kontinuierlicher Wahrscheinlichkeitsverteilungen. Ihre Wahrscheinlichkeitsdichte wird auch Gauß Funktion, Gauß Kurve, Gauß… … Deutsch Wikipedia
Gausssche Verteilung — Dichten normalverteilter Zufallsgrößen Die Normal oder Gauß Verteilung (nach Carl Friedrich Gauß) ist ein wichtiger Typ kontinuierlicher Wahrscheinlichkeitsverteilungen. Ihre Wahrscheinlichkeitsdichte wird auch Gauß Funktion, Gauß Kurve, Gauß… … Deutsch Wikipedia
Gauß-Verteilung — Dichten normalverteilter Zufallsgrößen Die Normal oder Gauß Verteilung (nach Carl Friedrich Gauß) ist ein wichtiger Typ kontinuierlicher Wahrscheinlichkeitsverteilungen. Ihre Wahrscheinlichkeitsdichte wird auch Gauß Funktion, Gauß Kurve, Gauß… … Deutsch Wikipedia
Gaußsche Verteilung — Dichten normalverteilter Zufallsgrößen Die Normal oder Gauß Verteilung (nach Carl Friedrich Gauß) ist ein wichtiger Typ kontinuierlicher Wahrscheinlichkeitsverteilungen. Ihre Wahrscheinlichkeitsdichte wird auch Gauß Funktion, Gauß Kurve, Gauß… … Deutsch Wikipedia
Student's t-Verteilung — Dichten von t verteilten Zufallsgrößen Die Studentsche t Verteilung (auch Student t Verteilung) ist eine Wahrscheinlichkeitsverteilung, die 1908 von William Sealey Gosset entwickelt wurde. Er hatte festgestellt, dass der standardisierte… … Deutsch Wikipedia
Student'sche t-Verteilung — Dichten von t verteilten Zufallsgrößen Die Studentsche t Verteilung (auch Student t Verteilung) ist eine Wahrscheinlichkeitsverteilung, die 1908 von William Sealey Gosset entwickelt wurde. Er hatte festgestellt, dass der standardisierte… … Deutsch Wikipedia
Student-Verteilung — Dichten von t verteilten Zufallsgrößen Die Studentsche t Verteilung (auch Student t Verteilung) ist eine Wahrscheinlichkeitsverteilung, die 1908 von William Sealey Gosset entwickelt wurde. Er hatte festgestellt, dass der standardisierte… … Deutsch Wikipedia
Student t-Verteilung — Dichten von t verteilten Zufallsgrößen Die Studentsche t Verteilung (auch Student t Verteilung) ist eine Wahrscheinlichkeitsverteilung, die 1908 von William Sealey Gosset entwickelt wurde. Er hatte festgestellt, dass der standardisierte… … Deutsch Wikipedia