Krümmungswiderstand

Krümmungswiderstand
Physikalische Größe
Name Vortrieb, Bremskraft (1)
Größenart Kraft
Formelzeichen der Größe FV,FT
Größen- und
Einheiten-
system
Einheit Dimension
SI N M·L·T−2
Anmerkungen
(1) im negativen Falle
Siehe auch: Gewichtskraft FG, G; Reibungskraft FR; Auftrieb FA; Widerstand FW

Der Vortrieb ist in der Physik der Antriebstechnik und verwandter Themen wie der Biomechanik die effektive Kraft, die am Körper oder am System in Bewegungsrichtung wirkt.

Negativer Vortrieb heißt Bremskraft.

Allgemein gilt:

Vortrieb ist Antriebskraft minus Widerstand

Inhaltsverzeichnis

Grundlagen

Die grundlegenden Kräfte an einen Körper, hier dargestellt an einem Flügelprofil.
Zur Benennung siehe Text.

An einen Körper greifen in Bewegung etliche Kräfte an. Nach den Gesetzen der Gleichgewichtsbedingungen der Mechanik müssen sich diese aufheben. Die vier grundlegenden Kräfte der Antriebstechnik sind dabei:

  • Der Vortrieb \vec F_\mathrm{V} (engl. thrust), im negativen Falle Bremskraft (braking force)
  • Der Widerstand \vec F_\mathrm{W} (engl. drag)
  • Der Auftrieb \vec F_\mathrm{A} (engl. lift), im negativen Falle Abtrieb
  • Das Gewicht (die Gewichtskraft) \vec F_\mathrm{G} (engl. weight)

Je nachdem, wie die äußeren Kräfte am Fahrzeug, Flugobjekt, Schwimmkörper oder anderem angreifen, halten sich Auftrieb und Gewicht die Waage oder führen zu einer Vertikalbewegung, und was vom Antrieb \vec F_\mathrm{P} (engl. push, drive, impulsion, propulsion, u. a.) nicht durch den Widerstand aufgehoben wird, bleibt als effektiver Vortrieb übrig, der das Fahrzeug in Fahrtrichtung beschleunigt oder bremst.

In den meisten Fällen stehen die vier Grundkomponenten nicht orthogonal zueinander, und ihre jeweiligen Komponenten bilden kompliziertere Summen. Im weiteren wird auf die Vektorschreibweise verzichtet, und mit F der Betrag des Vektors bezeichnet, die jeweiligen Richtungen ergeben sich aus der Situation

Fahrzeugtechnik

Fahrzeugwiderstand, Zugwiderstand

Fahrzeuge[1][2] sind zwei grundlegenden Widerständen ausgesetzt: Dem Luftwiderstand und dem Bodenwiderstand (Fahrbahn- bzw. Streckenwiderstand, Wälzwiderstand der Räder), die Reibungsverluste innerhalb des Fahrzeugs zwischen der Antriebsmaschine und den angetriebenen Rädern werden dabei dem Wirkungsgrad der Antriebsmaschinerie zugerechnet (Lagerreibungswiderstände, Triebwerks- und Getriebewiderstände), und man trennt das Fahrzeug in die Antrieb- und die Abtriebsseite, von denen hier nur die zweitere betrachtet wird.

FW = FWL + FWB

Der Luftwiderstand berechnet sich:

F_\mathrm{WL} = \frac{\rho}{2} \cdot  c_{w \times A} \cdot v^2 = \bar c \cdot v^2
ρ: Luftdichte, 1,4 - 1,2 kg/m3 (−20 °C bis +30 °C)
cw×A: Luftwiderstandsindex
v: Geschwindigkeit

Der Luftwiderstand ist also Null am ruhenden Fahrzeug, und wächst mit dem Quadrat der Geschwindigkeit. Der Luftwiderstandsindex errechnet sich aus der Spantfläche (Stirnfläche) A mal Strömungswiderstandskoeffizient cw. c̅̅̅ ist ein Gesamtkoeffizent für den Luftwiderstand.

  • cw liegt bei 0,6 für ein Kabriolet und 0,3 für einen modernen PKW, der alte VW Käfer hatte 0,42 (ein damals revolutionärer Wert für ein Serienfahrzeug)[1], für einen Pritschenwagen bei 0,7 und 1,1 für einen Sattelzug[3]. Für Reisezüge rechnet man ungefähr je 0,10–0,20 je Mittelwagen, und jeweils 0,3–0,5 für Anfangswagen/Lokomotive und Endwagen[4].
  • A liegt bei 1,5 m² bei einem Sportwagen, bei 10 m² für einen LKW (4 m × 2,55 m nach StVO), bei Schienenfahrzeugen bei 10–15 m² (europäischer Standard: 4,30 m × 3,25 m maximal)[2]
  • Insgesamt liegt der Luftwiderstandsindex zwischen 0,5 für ein Formel 1-Rennfahrzeug und 15 für eine Schnellzug-Garnitur

Der Luftwiderstand lässt sich in Druckwiderstand (Staudruck auf die Stirnfläche), den Luftreibungswiderstand entlang der Außenhaut und den Sogwiderstand durch Wirbelbildung am Fahrzeugheck zerlegen

Der Bodenwiderstand wird durch eine Wälzreibung und die Führungskräfte verursacht, und setzt sich aus dem Reibungswiderstand zwischen Reifen bzw. Radkranz und Spur und dem Rollwiderstand (dem Verformungswiderstand der Räder bzw. des der Fahrbahndecke/Schiene) zusammen.

F_\mathrm{WB} = F_\mathrm{Re} + F_\mathrm{Ro} = ( c_\mathrm{Re} + c_\mathrm{Ro} ) \cdot F_\perp
F: Normalkraft auf den Boden
  • Der Rollwiderstand errechnet sich aus Rollwiderstandskoeffizienten cRo von 0,001 für die Eisenbahn und etwa 0,006–0,015 für Autoreifen auf Asphalt, liegt um 1 % für Schienenfahrzeuge und PKWs, erreicht aber auf schlechten Straßen typischerweise 3–5 %, bei Nutzfahrzeugen noch deutlich mehr.
  • Der Reibungswiderstand ist bei freiem Rollen im allgemeinen Null, und wirkt sich nur in Kurven (Schlupf), und bei starkem Beschleunigen auf die Antriebsräder aus (Traktion τ), bis etwa 10% wird die Kraft maximal übertragen (Kraftschluss). Er kann also im allgemeinen gegenüber dem Rollwiderstand vernachlässigt werden. Anders aber auf der Steigung und bei „glatter“ Fahrbahn (stark vermindertem Bodenwiderstand). Dann ist die Haftgrenze schnell überschritten (insbesondere beim Bremsen) und es herrschen andere mechanische Verhältnisse – dargestellt wird das am Kammschen Kreis

Der Bodenwiderstand insgesamt ist bei Schienenfahrzeugen mit starrer Achse, fehlender Lenkung und der niedrigen Haftreibung von Stahl auf Stahl in Kurvenfahrten aber durchaus relevant (Bogenwiderstand). Beide Teilwiderstände sind von der Geschwindigkeit recht unabhängig, aber direkt vom Gewicht des Fahrzeugs, das auf ebenem Boden die Normalkraft darstellt.

Zu den weiteren Widerständen gehört etwa der Längsneigungswiderstand durch die Überhöhung der Fahrbahn bzw. des Gleiskörpers in der Kurve, Schwallwiderstand, der Wasserwiderstand bei Nässe, der geschwindigkeitsabhängig ist (vergl. Aquaplaning) und anderes. Für anfahrende Fahrzeuge ist auch der erhöhte Anfahrwiderstand durch die höhere Haftreibung zu berücksichtigen.

In einfachster Form gilt also:

F_\mathrm{V} = F_\mathrm{P} - ( \bar c \cdot v^2 + c_\mathrm{R} \cdot G )
Der Vortrieb nimmt mit der Antriebskraft zu, und dem Gewicht und dem Quadrat der Geschwindigkeit ab.

Insgesamt ergibt sich ein Fahrzeugwiderstand von etwa 14 % für einen 40-t-Sattelzug beladen bei 80 km/h, unbeladen von 31 %[3], und von 4 % für einen 1800-t-Güterzug (vierachsig) bei demselben Tempo.[4] Der Widerstand ist für leere Fahrzeuge höher, weil ein Gutteil des Gesamtwiderstands vom Gewicht unabhängig ist, der des Zuges deutlich besser, weil diese Werte auf die nötige Leistung je Ladegewicht bezogen sind.

Beschleunigung und Leistung

Nun ist die Beschleunigung aber eine Frage der aufgebrachten Arbeit, also der Energiedifferenz, und neben der kinetischen Energie des Fahrzeugs selbst ist auch die Energie zu berücksichtigen, die in den rotierenden Rädern gespeichert ist. Diese ist Drehzahlabhängig, erhöht sich also bei Beschleunigung. Dazu greift man zum Konzept der reduzierten Masse:

m_\mathrm{red} = \frac{\Theta}{4 d^2}: reduzierte Masse im rotierenden Systemen
Φ: Trägheitsmoment
d: Durchmesser des Rades

Dann gilt für das System Fahrzeug das newtonsche Gesetz in der Form:

a = \frac {F_\mathrm{V}}{m_\mathrm{red}}
a: Beschleunigung
FV: Vortrieb
m_\mathrm{red} = m + N_\mathrm{Rad} \cdot m_\mathrm{Rad, red} (gleichförmige Räder vorausgesetzt)
mRad, red: reduzierte Masse des Rades
NRad: Anzahl der Räder

Weil sich das Fahrzeug aber neben dem Kräftegleichgewicht auch im Momentengleichgewicht befinden muss, und der Vortrieb im Fahrzeugschwerpunkt angreift, aber im Berührpunkt mit dem Boden vermittelt wird, und der Antrieb in den Achsen der Räder, und alle diese Kräfte mit verschiedenen Hebelarmen gegeneinander wirken, ist neben der reinen Leistung des Motors, die die Geschwindigkeit bestimmt, auch das Drehmoment des Motors entscheidende Kenngröße: Dieses bestimmt den Impuls und damit die Beschleunigungsfähigkeit (den Kraftstoß).

Und die Leistung, die für eine Geschwindigkeit nötig ist:

P = F_\mathrm{V} \cdot v

wobei P eine Größe ist, die von der Geschwindigkeit in der dritten Potenz abhängt. Daher ist die Maximalgeschwindigkeit so stark von der Antriebsleistung abhängig, und auch die Beschleunigungsfähigkeit nimmt mit dem Quadrat der Geschwindigkeit stark ab.

Luftfahrt

In der Luftfahrt ist ausschließlich der Luftwiderstand von Bedeutung (außer bei Start und Landung). Im Flug liegen liegen im allgemeinen Bewegungsrichtung und Antriebskraft in einer Linie, und, weil die Anströmgeschwindigkeit primär von der Fluggeschwindigkeit abhängt, auch der Widerstand am Rumpf. Der Luftwiderstand lässt sich in einen Formwiderstand, den parasitäreren Widerstand, und einen induzierter Widerstand durch den Auftrieb trennen.

Bei Auftriebskörpern

  • Im einfachsten Falle eines Ballons fehlt die Antriebskraft, der Auftrieb wird durch Verdrängung (statischer Auftrieb) erzeugt, und der Vortrieb ist dem Luftwiderstand exakt entgegengesetzt: Der Ballon fährt, wohin der Wind weht, und so schnell, wie schnell der Wind weht (stabile Strömung vorausgesetzt), die Bewegung über Grund entsteht nur durch die Bewegung des Medium
FV = 0
Der Körper ist im Kräftegleichgewicht, wenn er auch nicht sinkt oder steigt. Auf eine Änderung der Windgeschwindigkeit reagiert ein Ballon etwa
F_\mathrm{V} = F_\mathrm{W} = c \cdot m \cdot \frac {\mathrm{d} v_\mathrm{Wind}}{\mathrm{d} t}
c: Widerstandsziffer, für eine Kugel im unterkritischen Falle (kleine Reynoldszahl Re) etwa c \approx 0{,}5
  • Bei einem Luftschiff wird der Auftrieb ebenfalls vom Auftriebskörper erzeugt. Für langsame Geschwindigkeiten errechnet sich der Luftwiderstand nach dem linearen Widerstandsgesetz, ist also proportional zur Geschwindigkeit. Der Luftwiderstand eines Luftschiffs ist weniger von seiner Spantfläche (Stirnfläche), sondern seinem Volumen V abhängig, also vom Verhältnis Länge zu Durchmesser. Optimale Werte liegen bei l / d \approx 4{,}5. Der Vortrieb errechnet sich direkt aus der Antriebskraft an den Propellergondeln minus Luftwiderstand.
F_\mathrm{V} = F_\mathrm{P} - F_\mathrm{W}; F_\mathrm{W} = c_\mathrm{W} \cdot V^{\frac{2}{3}} \cdot \frac{\varrho}{2} \cdot v^2 [5]

An der Tragfläche

Kräfte am Flügel im kräftelosen Flug:
1: Anstellwinkel
2: Bewegungsrichtung
3: Auftrieb
4: Luftwiderstand
5: Gewichtskraft
6: Vortrieb

Beim Fliegen mit Tragflächen ist der Auftrieb, den die Tragflächen erzeugen, die entscheidende Größe. Der im Flügel angreifende Widerstand ist der Gesamtwiderstand des Fluggeräts. Um den Widerstand des Rumpfwerks auf den Flügel zu beziehen, in dem man das Kräftegleichgewicht ermittelt, führt man eine schädliche Fläche ein, die der Fläche einer quadratischen Platte (mit einem cW-Wert von 1,2) mit demselben Widerstand wie die nichtauftrieberzeugenden Teile des Flugzeugs entspricht, und ist sich im Druckpunkt der Profils montiert vorzustellen. Dieser Wert wird den Flügeln einfach zugeschlagen.

Wichtigste Größe der Berechnung des Kräftegleichgewichts ist der Anstellwinkel.

  • Ein Segelflugzeug ist in einer von äußeren Kräften freien Gleichgewichtslage: Es „fällt“, aber nicht in (annähernd) freiem Fall, sondern im Gleitflug entlang der Resultierenden der Kräfte Gewicht, Widerstand und Auftrieb (letztere Zwei zusammen nennt man die Luftkraft). Dabei stellt sich ein Gleichgewicht zwischen Fallgeschwindigkeit und Fluggeschwindigkeit in Richtung des Vortriebs ein, das den Anstellwinkel bedingt, und damit den Vortrieb. Wie beim freien Fall gibt es hier aber eine – gleitwinkelabhängige – Grenzgeschwindigkeit, in der der Luftwiderstand zu hoch wird, um noch freien Vortrieb zu liefern.
F_\mathrm{V} = \tan \gamma \cdot F_\mathrm{A}
γ: Gleitwinkel
\tan \gamma = \frac {c'_w}{c'_a}
c'w: Strömungswiderstandskoeffizient
c'a: Auftriebskoeffizent

Beide letztere Werte sind nicht auf die Stirnfläche, sondern die Tragfläche des Flügels im Drehpunkt bezogen und vom Anstellwinkel α abhängig. Sie sind für die Flügelgeometrie typisch und werden im Polardiagramm nach Otto Lilienthal angegeben.

  • Bei propellergetriebenen Flugfahrzeugen entspricht die Lage einem Segelflug mit einer zusätzlichen Antriebskraft. Dabei findet an den Rotorblättern derselbe physikalische Vorgang statt wie an den Flügeln, nur bildet hier der Auftrieb der Rotorflächen den Antrieb (die Schraubkraft), und der Vortrieb am Rotorblatt ist eine hemmende Kraft, die über die Entfernung von der Propellermittelachse vom Drehmoment des Motors überwunden werden muss. Die Schraubkraft, die das Flugzeug vorwärts zieht (oder schiebt), setzt dann als zusätzlicher Kraftvektor am Drehpunkt an, und kann das Flugobjekt über die Gleit-Grenzgeschwindigkeit hinaus beschleunigen.

Komplizierter sind die Verhältnisse im Kurvenflug, weil hier Gewichtskraft und Auftrieb nicht mehr in einer Linie stehen: Das Flugzeug neigt sich, bis ein Gleichgewicht zwischen Gewicht, Auftrieb und geschwindigkeitsabhängiger Zentrifugalkraft erreicht sind. Insgesamt ist der Auftrieb geringer, und darum für den Kurvenflug mehr Antrieb erforderlich. Ist die Geschwindigkeit zu niedrig, „schmiert“ das Flugzeug seitlich zur Kurvenmitte ab.

Der Flugkörper ist bei dieser Rechnung aber noch nicht im Momentengleichgewicht, da der Gesamtwiderstand im Schwerpunkt des Flugzeugs angreift, nicht in dem des Fügelprofils, und die Antriebskraft in der Triebwerksmittelachse. Das lässt sich nur durch die Konstruktion der Maschine ausgleichen, und darum sind Hochdecker im antriebslosen Flug weniger stabil, weil das entstehende Drehmoment das Flugzeug zum Sinkflug zieht. Bei modernen Maschinen gleichen sich die Momenten der Treibwerksgondeln und des Rumpfes um den Drehpunkt der Flügel aus.

Bei Strahltriebwerken

Bei Rückstoßantrieb nennt man die Antriebskraft den Schub (engl. propulsion).

Kurz vor Erreichen der Schallmauer steigt der Strömungswiderstandskoeffizient aber stark an, sinkt aber im Überschallflug wieder. In diesen Bereichen ist die Machsche Kennzahl Ma = v / c (Geschwindigkeit durch Schallgeschwindigkeit) wichtiger Kennwert. Der cW-Wert steigt bei Ma \to 1 auf teils mehrfache Werte an, und nähert sich für Ma > 2 wieder einem stabilen Wert an, der in der Nähe des subsonaren Werts liegt.[6]

  • Raketen erzeugen keinen Auftrieb. Der Luftwiderstand erweist sich dann am geringsten, wenn die Rakete etwa die Form eines langgestreckten Dreiecks hat, weil sie auf dem (sich auch seitlich ausdehnenden) Abgasstrahl „reitet“, und es keinen Sogwiderstand am Heck gibt. Der Vortrieb ist nahezu exakt gleich dem Schub. Allfällige Flügel dienen meist nur als Flugstabilisatoren, die verhindern, dass der Flugkörper um die Längsachse rotiert, oder zu trudeln beginnt.

Bei allen weiteren Berechnungen für Flugzeuge und insbesondere Raketen ist aber zu beachten, dass der Treibstoff einen Gut- bis Großteil der Flugkörpermasse ausmacht, und daher die Masse nicht als Konstante angesehen werden kann.

  • Bei Vortrieb im luftleeren Raum gibt es überhaubt keine Reibung mehr, hier gilt die ohne Einschränkung:
F_\mathrm{V} = F_\mathrm{P} = v_\mathrm{s} \cdot \frac {\mathrm{d} m}{\mathrm{d} t}: Raketengrundgleichung
vs: Strahlgeschwindigkeit des Triebwerks

Die Gewichtskraft wird aber nicht null, auch im Weltraum herrscht überall Gravitation. Schwerelosigkeit tritt nur bei einer stabilen Umlaufbahn auf. Weitab von größeren Massen ist die Gravitationkraft aber so klein, dass sich fast nurmehr der Vortrieb auswirkt, und sich durch Antrieb (also Beschleunigung der Raumflugkörpers) schwerkraftähnliche Verhältnisse erzeugen lassen (einfachste „künstliche Schwerkraft“). Bei konstanter Geschwindigkeit herrscht annähernd Schwerelosigkeit im Raumfahrzeug.


Schifffahrtstechnik

Lückenhaft In diesem Artikel oder Abschnitt fehlen wichtige Informationen.

Du kannst Wikipedia helfen, indem du sie recherchierst und einfügst.

Literatur

  • Karl-Heinrich Grote, Jörg Feldhusen (Hrsg.): Dubbel – Taschenbuch für den Maschinenbau., Springer, Berlin, div Aufl., aktuell: 22. Auflage, 2007, ISBN 978-3-540-49714-1
  • Manfred Mitschke: Dynamik der Kraftfahrzeuge. Springer, Berlin 1972, 1982, ISBN 3-540-05207-0, 2004, ISBN 978-3-540-42011-8
  • Dietrich Wende: Fahrdynamik. Transpress, Berlin 1983, 1990, ISBN 3-344-00363-1
  • H. Oertel (Hrsg.): Prandtl-Führer durch die Strömungslehre. Grundlagen und Phänomene Vieweg 2002 (11. Aufl), ISBN 3-528-48209-5

Einzelnachweise

  1. a b Dubbel, Kap. Widerstand von Fahrzeugen
  2. a b Rainer Rauschenberg: Potentiale für die Verringerung der externen Effekte des Verkehrssektors durch einen dezentralisierten und automatisierten Gütertransport der Bahn. Dissertation, Fachbereichs Wirtschaftswissenschaften, Goethe-Universität, Frankfurt am Main; insb. Kap. 4: Technische Einflußgrößen (Webdokument), ges. 27. November 2007
  3. a b Mitschke, 1972, S. 39ff – nach Rauschenberg
  4. a b Wende, 1983, S. 36ff – nach Rauschenberg
  5. Dubbel, 7. Aufl., S. 271, IV.G.5 Luftschiffkörper
  6. Dubbel, 7. Aufl., S. 272, Fig. 69

Wikimedia Foundation.

Игры ⚽ Нужно сделать НИР?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Neigungsverhältnis — oder kurz die »Neigung« einer Weg oder Bahnstrecke ist das Verhältnis des Höhenunterschiedes h zweier Punkte dieser Strecke zu ihrer wagerechten Entfernung l (s. Fig. 1); sie wird ausgedrückt entweder als trigonometrische Tangente des… …   Lexikon der gesamten Technik

  • Schmalspurbahnen — (narrow gauge railways; chemins de fer à voie étroite; ferrovia a scartamento ridotto), Eisenbahnen mit kleinerer Spur als der Vollspur (1∙435 m). Inhalt: 1. Entwicklung der S. – 2. Verschiedenheit der Spurweiten. – 3. Linienführung der S. – 4.… …   Enzyklopädie des Eisenbahnwesens

  • Krümmungsverhältnisse — der Eisenbahnen. Die Krümmungen der Eisenbahnlinien sind stets Kreisbögen oder aus solchen. zusammengesetzte Bögen, »Korbbögen«, weil andernfalls die Erhaltung der Gleislage genau in Richtung und Höhe sehr erschwert wäre. An den… …   Lexikon der gesamten Technik

  • Betriebsergebnisse — (resceipts from traffic; resultats d exploitation; risultati dell esercizio). Inhalt: A. Betriebseinnahmen. Betriebseinnahmenausweise. B. Betriebsausgaben. C. Betriebsüberschuß. D. Betriebskostenabgang (Betriebsdefizit). E. Betriebskoeffizient. F …   Enzyklopädie des Eisenbahnwesens

  • Virtuelle Länge — (virtual length; longueur virtuelle; lunghezza virtuale). Die V., auch Betriebs oder Vergleichslänge genannt, ist die Länge einer gedachten, meist einer wagrechten, geraden, ausnahmsweise einer schwach geneigten Bahn, welche die gleichen… …   Enzyklopädie des Eisenbahnwesens

  • Elevator [1] — Elevator, gebräuchlicher Ausdruck 1. für eine besondere Art von Aufzügen in Hotels, Waren , Geschäftshäusern u.s.w. (s. Aufzüge); 2. speziell für Hunt Pohligsche Löschvorrichtungen; 3. für Becher , Paternoster und Schöpfwerke; 4. pneumatischer… …   Lexikon der gesamten Technik

  • Neigungsverhältnisse der Bahn — oder »Neigung« der Bahn. I. Neigungsbezeichnung. Die Neigung der Bahn wird durch den Wert der Tangente des Neigungswinkels ausgedrückt (Abb. 315). 1. tg α = 1/l (Gemeiner Bruch). 2. tg α = n (Dezimalbruch) oder n ∙ 1000 = s‰ (Promille) n ∙ 100 =… …   Enzyklopädie des Eisenbahnwesens

  • Vorarbeiten — (building preparations; travaux préliminaires à la construction; lavori preliminari alla costruzione). Inhalt. Einleitung (Zweck und Einteilung). A. Die allgemeinen V. Wirtschaftliche und technische Vorerwägungen. Ausführung der technischen… …   Enzyklopädie des Eisenbahnwesens

  • Lokomotive — Lokomotive, Fahrzeug mit Motor, also ortsverändernde Maschine zur Beförderung von Wagen. Fahrzeuge, die mit einem sie fortbewegenden Motor ausgerüstet sind und selbst Personen oder Güter aufnehmen können – Motorwagen –, zählen nicht zu… …   Lexikon der gesamten Technik

  • Maßgebende Steigung — Maßgebende Steigung, die von Launhardt [1] eingeführte Bezeichnung desjenigen Neigungsverhältnisses, welches auf einer bestimmten Eisenbahnbetriebsabteilung bedingend ist für die Zugstärke bei gegebener Zugkraft oder umgekehrt, d.h. die größte… …   Lexikon der gesamten Technik

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”